Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical reconstruction of dust in the region of supernova remnant RX J1713.7−3946 from astrometric data

Abstract

The origin of the radiation observed in the region of the supernova remnant RX J1713.7−3946, one of the brightest TeV emitters, has been debated since its discovery. The existence of atomic and molecular clouds in this object supports the idea that part of the GeV gamma-ray emission in this region originates from proton–proton collisions. However, the observed column density of protons derived from observations of the gas cannot explain the whole emission. Yet there could be a fraction of protons contained in fainter structures that have not been detected so far. Here we search for faint objects in the line of sight of RX J1713.7−3946 using the principle of light extinction and the European Space Agency’s Gaia mission Data Release 2 astrometric and photometric data. We reveal and locate with precision a number of dust clouds and note that only one appears to be in the vicinity of RX J1713.7−3946. We estimate the embedded mass to be Mdust = (7.0 ± 0.6) × 103M, which might be big enough to contain the missing protons. Finally, using the fact that the supernova remnant is expected to be located in a dusty environment and that there appears to be only one such structure in the vicinity of RX J1713.7−3946, we set a very precise constraint on the supernova remnant distance, at 1.12 ± 0.01 kpc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurement principle.
Fig. 2: Reconstructed G-band extinction in the direction of the SNR.
Fig. 3: Reconstructed G-band extinction in the direction of the SNR, overlaid on HESS contours of the SNR for photons with energy >2 TeV.
Fig. 4: Reconstructed G-band extinction in two distance ranges.

Similar content being viewed by others

Data availability

The data used for our reconstruction are available from ref. 24. The results of our reconstruction is available at https://doi.org/10.5281/zenodo.4462826. The dataset consists of six approximate posterior samples over the whole reconstruction volume in Cartesian coordinates.

References

  1. Aharonian, F. A. Gamma rays from supernova remnants. Astropart. Phys. 43, 71–80 (2013).

    Article  ADS  Google Scholar 

  2. Aharonian, F., Ruizhi, Y. & de Oña Wilhelmi, E. Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 3, 561–567 (2019).

    Article  ADS  Google Scholar 

  3. Abdalla, H. et al. H.E.S.S. observations of RX J1713.7−3946 with improved angular and spectral resolution: evidence for gamma-ray emission extending beyond the X-ray emitting shell. Astron. Astrophys. 612, A6 (2018).

    Article  Google Scholar 

  4. Slane, P. et al. Non-thermal X-ray emission from the shell-type supernova remnant G347.3−0.5. Astrophys. J. 525, 357 (1999).

    Article  ADS  Google Scholar 

  5. Sano, H. et al. A detailed study of non-thermal X-ray properties and Interstellar gas toward the γ-ray supernova remnant RX J1713.7−3946. Astrophys. J. 729, 175 (2015).

    Article  ADS  Google Scholar 

  6. Lazendic, J. S. et al. A high-resolution study of non-thermal radio and X-ray emission from supernova remnant G347.3−0.5. Astrophys. J. 602.1, 271 (2004).

    Article  ADS  Google Scholar 

  7. Abdo, A. A. et al. Observations of the young supernova remnant RX J1713.7−3946 with the Fermi Large Area Telescope. Astrophys. J. 734, 28 (2011).

    Article  ADS  Google Scholar 

  8. Gabici, S. & Aharonian, F. Gamma-ray emission from young supernova remnants: hadronic or leptonic? EPJ Web Conf. 121, 04001 (2015).

    Article  Google Scholar 

  9. Yamazaki, R., Kohri, K. & Katagiri, H. Gamma-ray spectrum of RX J1713.7−3946 in the Fermi era and future detection of neutrinos. Astron. Astrophys. 495, 9–13 (2009).

    Article  ADS  Google Scholar 

  10. Gabici, S. & Aharonian, F. Hadronic gamma-rays from RX J1713.7−3946? Mon. Not. R. Astron. Soc. 445, L70–L73 (2014).

    Article  ADS  Google Scholar 

  11. Celli, S., Morlino, G., Gabici, S. & Aharonian, F. Supernova remnants in clumpy media: particle propagation and gamma-ray emission. Mon. Not. R. Astron. Soc. 487, 3199–3213 (2019).

    Article  ADS  Google Scholar 

  12. Fukui, Y. et al. A detailed study of the molecular and atomic gas toward the γ-ray supernova remnant RX J1713.7−3946: spatial TeV γ-ray and interstellar medium gas correspondence. Astrophys. J. 746, 82 (2012).

    Article  ADS  Google Scholar 

  13. Inoue, T., Yamazaki, R., Inutsuka, S. & Fukui, Y. Toward understanding the cosmic-ray acceleration at young supernova remnants interacting with interstellar clouds: possible applications to RX J1713.7−3946. Astrophys. J. 744, 71 (2012).

    Article  ADS  Google Scholar 

  14. Ambrogi, L., Celli, S. & Aharonian, F. On the potential of Cherenkov Telescope Arrays and KM3 Neutrino Telescopes for the detection of extended sources. Astropart. Phys. 100, 69–79 (2018).

    Article  ADS  Google Scholar 

  15. Adrian-Martínez, S. et al. Letter of intent for KM3NeT 2.0. J. Phys. G 43, 084001 (2016).

    Article  ADS  Google Scholar 

  16. The Cherenkov Telescope Array Consortium Science with the Cherenkov Telescope Array (World Scientific, 2018).

  17. Fukui, J. et al. Discovery of interacting molecular gas toward the TeV gamma-ray peak of the SNR G 347.3−0.5. Publ. Astron. Soc. Jpn. 55, L61–L64 (2003).

    Article  ADS  Google Scholar 

  18. Sano, H. et al. Star-forming dense cloud cores in the TeV gamma-ray SNR RX J1713.7−3946. Astrophys. J. 724, 59 (2010).

    Article  ADS  Google Scholar 

  19. Sano, H. et al. Non-thermal X-rays and interstellar gas toward the γ-ray supernova remnant RX J1713.7−3946: evidence for X-ray enhancement around CO and H i clumps. Astrophys. J. 778, 59 (2013).

    Article  ADS  Google Scholar 

  20. Moriguchi, Y. et al. A detailed study of molecular clouds toward the TeV gamma-ray supernova remnant G347.3−0.5. Astrophys. J. 631, 947–963 (2005).

    Article  ADS  Google Scholar 

  21. Maxted, N. et al. Dense gas towards the RX J1713.7−3946 supernova remnant. Publ. Astron. Soc. Aust. 30, 1–14 (2013).

    Article  Google Scholar 

  22. Uchiyama, Y., Aharonian, F. A., Tanaka, T., Takahashi, T. & Maeda, Y. Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007).

    Article  ADS  Google Scholar 

  23. Dobashi, K. et al. Atlas and catalog of dark clouds based on Digitized Sky Survey I. Publ. Astron. Soc. Jpn 57, S1–S386 (2005).

    Article  Google Scholar 

  24. Anders, F. et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18. Astron. Astrophys. 628, A94 (2019).

    Article  Google Scholar 

  25. Gaia Collaboration Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  26. Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).

  27. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163 (2006).

  28. Kaiser, N. et al. Pan-STARRS: a large synoptic survey telescope array. Survey and other telescope technologies and discoveries. Proc. SPIE 4836, 154–164 (2002).

    Article  ADS  Google Scholar 

  29. Cutri, R. M. et al. AllWISE Data Release: II/328 (VizieR, 2013); https://cdsarc.unistra.fr/viz-bin/cat/II/328

  30. Brand, J. & Blitz, L. The velocity field of the outer galaxy. Astron. Astrophys 275, 67–90 (1993).

    ADS  Google Scholar 

  31. Gaia Collaboration The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  32. Leike, R. L., Glatzle, M. & Enßlin, T. A. Resolving nearby dust clouds. Astron. Astrophys. 639, A138 (2020).

    Article  ADS  Google Scholar 

  33. Green, D. A. Galactic SNRs: Summary Data (2019); http://www.mrao.cam.ac.uk/surveys/snrs/snrs.data.html

  34. Micelotta, E. R., Matsuura, M. & Sarangi, A. Dust in supernovae and supernova remnants II: processing and survival. Space Sci. Rev. 214, 53 (2018).

    Article  ADS  Google Scholar 

  35. Voshchinnikov, N. V., Henning, T. & Il’in, V. B. Mid-infrared extinction and fresh silicate dust toward the Galactic Center. Astrophys. J. 837, 25 (2017).

    Article  ADS  Google Scholar 

  36. Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

    Article  ADS  Google Scholar 

  37. Xue, M. et al. A precise determination of the mid-infrared interstellar extinction law based on the APOGEE spectroscopic survey. Astrophys. J. Suppl. Ser. 224, 23 (2016).

    Article  ADS  Google Scholar 

  38. Wang, S. & Xiaodian, C. The optical to mid-infrared extinction law based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE surveys. Astrophys. J. 877, 116 (2019).

    Article  ADS  Google Scholar 

  39. The Planck Collaboration Planck 2018 results-I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 641, A1 (2020).

  40. Leike, R. & Enßlin, T. Charting nearby dust clouds using Gaia data only. Astron. Astrophys. 631, A32 (2019).

    Article  ADS  Google Scholar 

  41. Knollmüller, J. & Enßlin, T. Metric Gaussian variational inference. Preprint at https://arxiv.org/abs/1901.11033 (2019).

  42. Foight, D. R., Güver, T., Özel, F. & Slane, P. O. Probing X-ray absorption and optical extinction in the interstellar medium using Chandra observations of supernova remnants. Astrophys. J. 826, 66 (2016).

    Article  ADS  Google Scholar 

  43. Goodman, A. A., Pineda, J. E. & Schnee, S. L. The "true" column density distribution in star-forming molecular clouds. Astrophys. J. 692, 91 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of public data from the HESS telescope https://www.mpi-hd.mpg.de/hfm/HESS/pages/dl3-dr1/. We gratefully acknowledge the NANTEN team, for sharing gas data in our region of interest. A.K.-M. acknowledges the support from the Fundação para a Ciência e a Tecnologia (FCT) through grants PTDC/FIS-AST/31546/2017 and UID/FIS/00099/2013. This work has made use of data from the ESA mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. A.K.-M. is a member of the Gaia DPAC.

Author information

Authors and Affiliations

Authors

Contributions

The idea was proposed by C.B. and developed with S.C. and A.K.-M. R.L. developed and applied the entire method, wrote the Methods section and contributed to the text of the manuscript. S.C. wrote large parts of the manuscript and helped to review and understand the results of the method. A.K.-M. and C.B. wrote substantial parts of the manuscript and helped to review and understand the results of the method. M.G. provided code and numerical advice regarding the method and helped to review the manuscript. Y.F. and H.S. contributed ISM data and helped to review the manuscript. G.R. contributed to the data and helped to review the manuscript and understand the results.

Corresponding authors

Correspondence to R. Leike or S. Celli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks Fabio Acero and Naomi Tsuji for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leike, R., Celli, S., Krone-Martins, A. et al. Optical reconstruction of dust in the region of supernova remnant RX J1713.7−3946 from astrometric data. Nat Astron 5, 832–838 (2021). https://doi.org/10.1038/s41550-021-01344-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01344-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing