Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The magnetic field across the molecular warped disk of Centaurus A

Abstract

Magnetic fields are amplified as a consequence of galaxy formation and turbulence-driven dynamos. Galaxy mergers can potentially amplify the magnetic fields from their progenitors, making the magnetic fields dynamically important. However, the effect of mergers on magnetic fields is still poorly understood. We use thermal polarized emission observations to trace the magnetic fields in the molecular disk of the nearest radio active galaxy, Centaurus A, which is thought to be the remnant of a merger. Here, we detect that the magnetic field orientations in the plane of the sky tightly follow the ~3.0 kpc-scale molecular warped disk. Our simple regular large-scale axisymmetric spiral magnetic field model can explain, to some extent, the averaged magnetic field orientations across the disk projected on the sky. Our observations also suggest the presence of small-scale turbulent fields, whose relative strengths increase with velocity dispersion and column density. These results have strong implications for understanding the generation and role of magnetic fields in the formation of galaxies across cosmic time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The measured B-field of Centaurus A using far-infrared polarimetric observations with HAWC+/SOFIA.
Fig. 2: Three-dimensional representation of the best B-field morphological model of Centaurus A.
Fig. 3: B-field model versus observations.
Fig. 4: Physical regions of Centaurus A as a function of their polarization properties.
Fig. 5: Polarization measurements as a function of the multi-phase ISM.

Data availability

The data that support the plots within this paper and other findings of this study are available from http://galmagfields.com or from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The code that support the algorithms within this paper and other findings of this study are available from https://github.com/galmagfields or from the corresponding author upon reasonable request.

References

  1. 1.

    Beck, R., Chamandy, L., Elson, E. & Blackman, E. G. Synthesizing observations and theory to understand galactic magnetic fields: progress and challenges. Galaxies 8, 4 (2020).

    ADS  Google Scholar 

  2. 2.

    Beck, R. & Wielebinski, R. in Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations (eds Oswalt, T. D. & Gilmore, G.) 641–723 (Springer, 2013).

  3. 3.

    Ruzmaikin, A., Sokolov, D. & Shukurov, A. Magnetism of spiral galaxies. Nature 336, 341–347 (1988).

    ADS  Google Scholar 

  4. 4.

    Brandenburg, A. & Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005).

    ADS  MathSciNet  Google Scholar 

  5. 5.

    Haverkorn, M., Brown, J. C., Gaensler, B. M. & McClure-Griffiths, N. M. The outer scale of turbulence in the magnetoionized galactic interstellar medium. Astrophys. J. 680, 362–370 (2008).

    ADS  Google Scholar 

  6. 6.

    Pakmor, R. & Springel, V. Simulations of magnetic fields in isolated disc galaxies. Mon. Not. R. Astron. Soc. 432, 176–193 (2013).

    ADS  Google Scholar 

  7. 7.

    Pakmor, R., Marinacci, F. & Springel, V. Magnetic fields in cosmological simulations of disk galaxies. Astrophys. J. Lett. 783, L20 (2014).

    ADS  Google Scholar 

  8. 8.

    Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  Google Scholar 

  9. 9.

    Su, K. -Y. et al. Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields. Mon. Not. R. Astron. Soc. 473, 111–115 (2018).

    Google Scholar 

  10. 10.

    Ntormousi, E. Magnetic fields in massive spirals: the role of feedback and initial conditions. Astron. Astrophys. 619, L5 (2018).

    ADS  Google Scholar 

  11. 11.

    Bernet, M. L., Miniati, F., Lilly, S. J., Kronberg, P. P. & Dessauges-Zavadsky, M. Strong magnetic fields in normal galaxies at high redshift. Nature 454, 302–304 (2008).

    ADS  Google Scholar 

  12. 12.

    Mao, S. A. et al. Detection of microgauss coherent magnetic fields in a galaxy five billion years ago. Nat. Astron. 1, 621–626 (2017).

    ADS  Google Scholar 

  13. 13.

    Rieder, M. & Teyssier, R. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields. I. The kinematic phase. Mon. Not. R. Astron. Soc. 457, 1722–1738 (2016).

    ADS  Google Scholar 

  14. 14.

    Graham, J. A. The structure and evolution of NGC 5128. Astrophys. J. 232, 60–73 (1979).

    ADS  Google Scholar 

  15. 15.

    Struve, C., Oosterloo, T. A., Morganti, R. & Saripalli, L. Centaurus A: morphology and kinematics of the atomic hydrogen. Astron. Astrophys. 515, A67 (2010).

    ADS  Google Scholar 

  16. 16.

    Baade, W. & Minkowski, R. On the identification of radio sources. Astrophys. J. 119, 215–231 (1954).

    ADS  Google Scholar 

  17. 17.

    Quillen, A. C., Neumayer, N., Oosterloo, T. & Espada, D. The warped disk of Centaurus A from a radius of 2 to 6500 pc. Publ. Astron. Soc. Aust. 27, 396–401 (2010).

    ADS  Google Scholar 

  18. 18.

    Quillen, A. C., de Zeeuw, P. T., Phinney, E. S. & Phillips, T. G. The kinematics of the molecular gas in Centaurus A. Astrophys. J. 391, 121–136 (1992).

    ADS  Google Scholar 

  19. 19.

    Mirabel, I. F. et al. A barred spiral at the centre of the giant elliptical radio galaxy Centaurus A. Astron. Astrophys. 341, 667–674 (1999).

    ADS  Google Scholar 

  20. 20.

    Leeuw, L. L., Hawarden, T. G., Matthews, H. E., Robson, E. I. & Eckart, A. Deep submillimeter imaging of dust structures in Centaurus A. Astrophys. J. 565, 131–139 (2002).

    ADS  Google Scholar 

  21. 21.

    Quillen, A. C. et al. Spitzer observations of the dusty warped disk of Centaurus A. Astrophys. J. 645, 1092–1101 (2006).

    ADS  Google Scholar 

  22. 22.

    van Gorkom, J. H., van der Hults, J. M., Haschick, A. D. & Tubbs, A. D. VLA H i observations of the radio galaxy Centaurus A. Astron. J. 99, 1781–1788 (1990).

    ADS  Google Scholar 

  23. 23.

    Nicholson, R. A., Bland-Hawthorn, J. & Taylor, K. The structure and dynamics of the gaseous and stellar components in Centaurus A. Astrophys. J. 387, 503–521 (1992).

    ADS  Google Scholar 

  24. 24.

    Quillen, A. C., Graham, J. R. & Frogel, J. A. The warped disk of Centaurus A in the near-infrared. Astrophys. J. 412, 550–567 (1993).

    ADS  Google Scholar 

  25. 25.

    Sparke, L. S. A dynamical model for the twisted gas disk in Centaurus A. Astrophys. J. 473, 810–821 (1996).

    ADS  Google Scholar 

  26. 26.

    Elvius, A. & Hall, J. S. Polarimetric observations of NGC 5128 (Cen A) and other extragalactic objects. Bull. Lowell Obs. 6, 123–134 (1964).

    ADS  Google Scholar 

  27. 27.

    Berry, D. S. Polarimetry of the Peculiar Elliptical Galaxy, NGC 5128. PhD thesis, Univ. of Durham (1985); http://etheses.dur.ac.uk/7592/

  28. 28.

    Bailey, J., Sparks, W. B., Hough, J. H. & Axon, D. J. Infrared polarimetry of the nucleus of Centaurus A: the nearest blazar? Nature 322, 150–151 (1986).

    ADS  Google Scholar 

  29. 29.

    Hough, J. H., Bailey, J. A., Rouse, M. F. & Whittet, D. C. B. Interstellar polarization in the dust lane of Centaurus A (NGC 5128). Mon. Not. R. Astron. Soc. 227, 1–5 (1987).

    Google Scholar 

  30. 30.

    Schreier, E. J., Capetti, A., Macchetto, F., Sparks, W. B. & Ford, H. J. Hubble Space Telescope imaging and polarimetry of NGC 5128 (Centaurus A). Astrophys. J. 459, 535–541 (1996).

    ADS  Google Scholar 

  31. 31.

    Packham, C. et al. Near-infrared and millimetre polarimetry of Cen A. Mon. Not. R. Astron. Soc. 278, 406–416 (1996).

    ADS  Google Scholar 

  32. 32.

    Scarrott, S. M., Foley, N. B., Gledhill, T. M. & Wolstencroft, R. D. BVRI imaging polarimetric studies of the galaxy NGC 5128. Mon. Not. R. Astron. Soc. 282, 252–262 (1996).

    ADS  Google Scholar 

  33. 33.

    Capetti, A. et al. Hubble Space Telescope infrared imaging polarimetry of Centaurus A: implications for the unified scheme and the existence of a misdirected BL Lacertae nucleus. Astrophys. J. 544, 269–276 (2000).

    ADS  Google Scholar 

  34. 34.

    Jones, T. J. The magnetic field geometry in M82 and Centaurus A. Astron. J. 120, 2920–2927 (2000).

    ADS  Google Scholar 

  35. 35.

    Parkin, T. J. et al. The gas-to-dust mass ratio of Centaurus A as seen by Herschel. Mon. Not. R. Astron. Soc. 422, 2291–2301 (2012).

    ADS  Google Scholar 

  36. 36.

    Israel, F. P. Centaurus A – NGC 5128. Astron. Astrophys. Rev. 8, 237–278 (1998).

    ADS  Google Scholar 

  37. 37.

    Krause, M. et al. CHANG-ES. XXII. Coherent magnetic fields in the halos of spiral galaxies. Astron. Astrophys. 639, A112 (2020).

    Google Scholar 

  38. 38.

    Espada, D. et al. Disentangling the circumnuclear environs of Centaurus A: gaseous spiral arms in a giant elliptical galaxy. Astrophys. J. Lett. 756, L10 (2012).

    ADS  Google Scholar 

  39. 39.

    Ruiz-Granados, B., Rubiño-Martín, J. A. & Battaner, E. Constraining the regular Galactic magnetic field with the 5-year WMAP polarization measurements at 22 GHz. Astron. Astrophys. 522, A73 (2010).

  40. 40.

    Braun, R., Heald, G. & Beck, R. The Westerbork SINGS survey. III. Global magnetic field topology. Astron. Astrophys. 514, A42 (2010).

  41. 41.

    Espada, D. et al. Disentangling the circumnuclear environs of Centaurus A. I. High-resolution molecular gas imaging. Astrophys. J. 695, 116–134 (2009).

    ADS  Google Scholar 

  42. 42.

    Quillen, A. C. et al. Discovery of a 500 parsec shell in the nucleus of Centaurus A. Astrophys. J. 641, 29–32 (2006).

    Google Scholar 

  43. 43.

    Jaffe, T. R. Practical modeling of large-scale galactic magnetic fields: status and prospects. Galaxies 7, 52 (2019).

  44. 44.

    Jones, T. J. Infrared polarimetry and the interstellar magnetic field. Astrophys. J. 346, 728–734 (1989).

    ADS  Google Scholar 

  45. 45.

    Hildebrand, R. H., Dotson, J. L., Dowell, C. D., Scheluning, D. A. & Vaillancourt, J. E. The far-infrared polarization spectrum: first results and analysis. Astrophys. J. 516, 834–842 (1999).

    ADS  Google Scholar 

  46. 46.

    Caldú-Primo, A. et al. A high-dispersion molecular gas component in nearby galaxies. Astron. J. 146, 150 (2013).

  47. 47.

    Chyży, K. T. & Beck, R. Magnetic fields in merging spirals – the Antennae. Astron. Astrophys. 417, 541–555 (2004).

    ADS  Google Scholar 

  48. 48.

    Drzazga, R. T., Chyży, K. T., Jurusik, W. & Wiórkiewicz, K. Magnetic field evolution in interacting galaxies. Astron. Astrophys. 533, A22 (2011).

  49. 49.

    Rodenbeck, K. & Schleicher, D. R. G. Magnetic fields during galaxy mergers. Astron. Astrophys. 593, A89 (2016).

  50. 50.

    Lopez-Rodriguez, E., Antonucci, R., Chary, R. -R. & Kishimoto, M. The highly polarized dusty emission core of Cygnus A. Astrophys. J. 861, L23 (2018).

  51. 51.

    Bland, J., Taylor, K. & Atherton, P. D. The structure and kinematics of the ionized gas within NGC 5128 (Cen A). I. Taurus observations. Mon. Not. R. Astron. Soc. 228, 595–621 (1987).

    ADS  Google Scholar 

  52. 52.

    Eckart, A. et al. Observations of CO isotopic emission and the far-infrared continuum of Centaurus A. Astrophys. J. 363, 451–463 (1990).

    ADS  Google Scholar 

  53. 53.

    Phillips, T. G. et al. CO emission from Centaurus A. Astrophys. J. Lett. 322, 73–77 (1987).

    ADS  Google Scholar 

  54. 54.

    Thomson, R. C. Galaxy shredding. I. Centaurus A, NGC 5237 and the Fourcade–Fegueroa shred. Mon. Not. R. Astron. Soc. 257, 689–698 (1992).

    ADS  Google Scholar 

  55. 55.

    Ferrarese, L. et al. The discovery of cepheids and a distance to NGC 5128. Astrophys. J. 654, 186–218 (2007).

    ADS  Google Scholar 

  56. 56.

    Karachentsev, I. D. et al. New distances to galaxies in the Centaurus A group. Astron. Astrophys. 385, 21–31 (2002).

    ADS  Google Scholar 

  57. 57.

    Rejkuba, M., Minniti, D., Silva, D. R. & Bedding, T. R. Long period variables in NGC 5128. II. Near-IR properties. Astron. Astrophys. 411, 351–360 (2003).

    ADS  Google Scholar 

  58. 58.

    Vaillancourt, J. E. et al. Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy. Proc. SPIE 6678, 66780D (2007).

    Google Scholar 

  59. 59.

    Dowell, C. D. et al. HAWCPol: a first-generation far-infrared polarimeter for SOFIA. Proc. SPIE 7735, 77356H (2010).

    Google Scholar 

  60. 60.

    Harper, D. A. et al. HAWC+, the far-infrared camera and polarimeter for SOFIA. J. Astron. Instrum. 7, 1840008 (2018).

  61. 61.

    Lopez-Rodriguez, E. et al. The emission and distribution of dust of the torus of NGC 1068. Astrophys. J. 859, 99 (2018).

  62. 62.

    Kovács, A. SHARC-2 350 Micron Observations of Distant Submillimeter-selected Galaxies and Techniques for the Optimal Analysis and Observing of Weak Signals. PhD thesis, California Institute of Technology (2006); https://doi.org/10.7907/8ZM9-6671

  63. 63.

    Laing, R. A. Magnetic fields in extragalactic radio sources. Astrophys. J. 248, 87–104 (1981).

    ADS  Google Scholar 

  64. 64.

    Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

    Google Scholar 

  65. 65.

    Ramachandran, P. & Varoquaux, G. Mayavi: 3D visualization of scientific data. Comput. Sci. Eng. 13, 40–51 (2011).

    Google Scholar 

  66. 66.

    Fujimoto, M. & Tosa, M. Spiral condensation of gas in disk galaxies by bisymmetric twisted magnetic fields – two-dimensional case. Publ. Astron. Soc. Jpn 32, 567–580 (1980).

    ADS  Google Scholar 

  67. 67.

    Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001).

    ADS  Google Scholar 

  68. 68.

    Aitken, D. K., Hough, J. H., Roche, P. F., Smith, C. H. & Wright, C. M. Mid-infrared polarimetry and magnetic fields: an observing strategy. Mon. Not. R. Astron. Soc. 348, 279–284 (2004).

    ADS  Google Scholar 

  69. 69.

    Hildebrand, R. H. The determination of cloud masses and dust characteristics from submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267–282 (1983).

    ADS  Google Scholar 

  70. 70.

    Chuss, D. T. et al. HAWC+/SOFIA multiwavelength polarimetric observations of OMC-1. Astrophys. J. 872, 187–208 (2019).

    ADS  Google Scholar 

  71. 71.

    King, P. K., Chen, C. -Y., Fissel, L. M. & Li, Z.-Y. Effects of grain alignment efficiency on synthetic dust polarization observations of molecular clouds. Mon. Not. R. Astron. Soc. 490, 2760–2778 (2019).

  72. 72.

    Espada, D. et al. Star formation efficiencies at giant molecular cloud scales in the molecular disk of the elliptical galaxy NGC 5128 (Centaurus A). Astrophys. J. 887, 88 (2019).

  73. 73.

    Dobbs, C. L. & Price, D. J. Magnetic fields and the dynamics of spiral galaxies. Mon. Not. R. Astron. Soc. 383, 497–512 (2008).

    ADS  Google Scholar 

Download references

Acknowledgements

I thank K. Subramanian, K. Tassis, R. Davies, B.-G. Andersson and T. Osterloo for many useful discussions on theoretical approaches, hydromagnetic simulation, gas dynamics and dust grain alignment theories. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) under the Program 07_0032. SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart.

Author information

Affiliations

Authors

Contributions

E.L.-R. led the project, carried out observations, developed the analysis methods and data reductions, interpreted results and wrote the text.

Corresponding author

Correspondence to Enrique Lopez-Rodriguez.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information Nature Astronomy thanks Dmitry Sokoloff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Summary of OTFMAP polarimetric observations.

Columns, from left to right: filter central wavelength, filter bandwidth, angular resolution of the observations, scan rate, scan phase, scan amplitude, scan duration, number of observation sets obtained, and total observation time on-source. Source data

Extended Data Fig. 2 Polarization measurements of the several regions of the galactic disk.

Columns, from left to right: region of the galaxy, median magnetic field orientation, uncertainty of the magnetic field orientation, median polarization degree, uncertainty of the polarization degree. Source data

Extended Data Fig. 3 Physical regions based on B-field orientation and degree of polarization.

Histograms of P (a) and PA (b) of polarization for measurements with P/σP > 3. Three distinct regions are found for the PA of polarization, which are identified with the west (orange), east (red) and low polarized (black) regions. The boundaries of each region are shown with vertical black dashed lines. (c), The spatial correspondence of the three regions identified using the PA distributions are shown with the same colors as the plots at b. The total intensity contours are shown as in Fig. 1. A legend polarization of 10% (black) and beam size of 7.8” (red circle) are shown.

Extended Data Fig. 4 Magnetic field of the central 50” x 50” (0.8 x 0.8 kpc2) of Centaurus A.

a, Total flux (colorscale) with overlaid B-field orientations (white lines). b, Polarized flux (colorscale) with overlaid B-field orientation (white lines). A legend polarization of 5% (black) and beam size of 7.8” (red circle) are shown.

Extended Data Fig. 5 Parameters of the magnetic field morphological model.

Columns, from left to right: Free parameters used in the magnetic field model, symbols associated with the free parameter, boundaries of the flat pior distribution, median value of the posterior distribution with 1σ uncertainty values. Source data

Extended Data Fig. 6 Posterior distributions of the magnetic field morphological model.

A reference of the parameter definitions, used priors, and median values is shown in Extended Data Fig. 5.

Extended Data Fig. 7 Polarization map vs physical parameters.

Temperature (a) and column density (b) maps of Centaurus A with overlaid B-field orientation (while lines) with P/σP > 2.5 and PI/σPI > 2. Temperature contours start at 20 K increasing in steps of 0.5 K, and column density density contours start at log(NH+H2 [cm−2]) = 20.6 increasing in steps of 0.1. 12CO(1-0) integrated line emission (c) and velocity dispersion (d) of the warped disk of Centaurus A with overlaid B-field orientation (white lines) with P/σP > 2.5 and PI/σPI > 2.

Extended Data Fig. 8 Polarized flux vs. total intensity plots.

P-I and PI-I plots at 89 μm vs temperature (a,b) and column density (c,d). The trend of the bulk of the P-I plot, P τ−1, is shown as a black solid line in panels (a) and (c). The uncertainties of the debiased polarized intensity in plots (b) and (d) are shown. The blue dotted vertical lines at I = 1000 and 2700 MJy sr−1 show the limits of the three physical regions found in this analysis. The black dotted lines in panels (b) and (d) show the maximum expected polarization, P  I0 = 15, 6.5, and 1.5% for each of these physical regions, respectively.

Extended Data Fig. 9 Power-law index of plots from Fig. 5.

Columns, from left to right: Parameters of the y-axis used in each fit, regions of the galaxy used for the fit, power-law indexes for the parameters used in the x-axis T, NH+H2, and σν,12CO(1-0). Source data

Extended Data Fig. 10 Velocity dispersion of the outer and molecular disk.

12CO(1-0) velocity dispersion histograms of the outer disk (red) and molecular disk (blue) as identified in Fig. 4. The median (solid line) and 1σ (dashed line) are shown for each physical structure. These values correspond to σv,12CO(1−0) = 18.4 ± 9.2 (km s−1), and σv,12CO(1−0) = 6.4 ± 6.0 (km s−1) for the molecular disk and outer disk, respectively.

Source data

Source Data Table 1

Medians of the physical parameters of each region identified in Fig. 4.

Source Data Extended Data Fig. 1

Summary of OTFMAP polarimetric observations.

Source Data Extended Data Fig. 2

Polarization measurements of the several regions of the galactic disk.

Source Data Extended Data Fig. 5

Parameters of the magnetic field morphological model.

Source Data Extended Data Fig. 9

Power-law index of plots from Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopez-Rodriguez, E. The magnetic field across the molecular warped disk of Centaurus A. Nat Astron 5, 604–614 (2021). https://doi.org/10.1038/s41550-021-01329-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing