Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly polarized microstructure from the repeating FRB 20180916B


Fast radio bursts (FRBs) are bright, coherent, short-duration radio transients of as-yet unknown extragalactic origin. FRBs exhibit a variety of spectral, temporal and polarimetric properties that can unveil clues into their emission physics and propagation effects in the local medium. Here, we present the high-time-resolution (down to 1 μs) polarimetric properties of four 1.7 GHz bursts from the repeating FRB 20180916B, which were detected in voltage data during observations with the European Very Long Baseline Interferometry Network. We observe a range of emission timescales that spans three orders of magnitude, with the shortest component width reaching 3–4 μs (below which we are limited by scattering). We demonstrate that all four bursts are highly linearly polarized (80%), show no evidence of significant circular polarization (15%), and exhibit a constant polarization position angle (PPA) during and between bursts. On short timescales (100 μs), however, there appear to be subtle PPA variations (of a few degrees) across the burst profiles. These observational results are most naturally explained in an FRB model in which the emission is magnetospheric in origin, in contrast to models in which the emission originates at larger distances in a relativistic shock.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Burst profiles at 16 μs and 1 μs time resolution for four 1.7 GHz bursts from FRB 20180916B.
Fig. 2: Microsecond structure in B4-sb2 consistent with amplitude-modulated noise.
Fig. 3: Polarimetric burst profiles and PPAs for four 1.7 GHz bursts from FRB 20180916B.
Fig. 4: Microsecond-resolution burst polarization profiles and PPAs for B3 and B4.

Data availability

The data that support the plots and results in this study are available at or from the corresponding author upon reasonable request.

Code availability

The code used to analyse the data and create the figures in this work can be found at


  1. 1.

    Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

    ADS  Article  Google Scholar 

  2. 2.

    Cordes, J. M. & Chatterjee, S. Fast radio bursts: an extragalactic enigma. Annu. Rev. Astron. Astrophys. 57, 417–465 (2019).

    ADS  Article  Google Scholar 

  3. 3.

    Farah, W. et al. FRB microstructure revealed by the real-time detection of FRB170827. Mon. Not. R. Astron. Soc. 478, 1209–1217 (2018).

    ADS  Article  Google Scholar 

  4. 4.

    Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Cho, H. et al. Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. Astrophys. J. Lett. 891, L38 (2020).

    ADS  Article  Google Scholar 

  6. 6.

    Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Caleb, M. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts – III. Polarization properties of FRBs 160102 and 151230. Mon. Not. R. Astron. Soc. 478, 2046–2055 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Day, C. K. et al. High time resolution and polarization properties of ASKAP-localized fast radio bursts. Mon. Not. R. Astron. Soc. 497, 3335–3350 (2020).

    ADS  Article  Google Scholar 

  9. 9.

    Petroff, E. et al. A real-time fast radio burst: polarization detection and multiwavelength follow-up. Mon. Not. R. Astron. Soc. 447, 246–255 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    CHIME/FRB Collaboration et al.CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, L24 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    Luo, R. et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature 586, 693–696 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Spitler, L. G. et al. Fast radio burst discovered in the Arecibo pulsar ALFA survey. Astrophys. J. 790, 101 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Kumar, P. et al. Extremely band-limited repetition from a fast radio burst source. Mon. Not. R. Astron. Soc. 500, 2525–2531 (2020).

    ADS  Article  Google Scholar 

  16. 16.

    Gajjar, V. et al. Highest frequency detection of FRB 121102 at 4–8 GHz using the Breakthrough Listen digital backend at the Green Bank Telescope. Astrophys. J. 863, 2 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Chawla, P. et al. Detection of repeating FRB 180916.J0158+65 down to frequencies of 300 MHz. Astrophys. J. Lett. 896, L41 (2020).

    ADS  Article  Google Scholar 

  18. 18.

    Pleunis, Z. et al. LOFAR detection of 110–188 MHz emission and frequency-dependent activity from FRB 20180916B. Preprint at (2020).

  19. 19.

    Gruzinov, A. & Levin, Y. Conversion measure of Faraday rotation–conversion with application to fast radio bursts. Astrophys. J. 876, 74 (2019).

    ADS  Article  Google Scholar 

  20. 20.

    Vedantham, H. K. & Ravi, V. Faraday conversion and magneto-ionic variations in fast radio bursts. Mon. Not. R. Astron. Soc. 485, L78–L82 (2019).

    ADS  Article  Google Scholar 

  21. 21.

    Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 577, 190–194 (2020).

    ADS  Article  Google Scholar 

  22. 22.

    Keimpema, A. et al. The SFXC software correlator for very long baseline interferometry: algorithms and implementation. Exp. Astron. 39, 259–279 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    van Straten, W. et al. PSRCHIVE: Development Library for the Analysis of Pulsar Astronomical Data (2011);

  24. 24.

    Cordes, J. M., Bhat, N. D. R., Hankins, T. H., McLaughlin, M. A. & Kern, J. The brightest pulses in the Universe: multifrequency observations of the Crab pulsar’s giant pulses. Astrophys. J. 612, 375–388 (2004).

    ADS  Article  Google Scholar 

  25. 25.

    Hessels, J. W. T. et al. FRB 121102 bursts show complex time–frequency structure. Astrophys. J. Lett. 876, L23 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Sobacchi, E., Lyubarsky, Y., Beloborodov, A. M. & Sironi, L. Self-modulation of fast radio bursts. Mon. Not. R. Astron. Soc. 500, 272–281 (2021).

    ADS  Article  Google Scholar 

  27. 27.

    Cordes, J. M. et al. Lensing of fast radio bursts by plasma structures in host galaxies. Astrophys. J. 842, 35 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Huppenkothen, D. et al. Quasi-periodic oscillations and broadband variability in short magnetar bursts. Astrophys. J. 768, 87 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Everett, J. E. & Weisberg, J. M. Emission beam geometry of selected pulsars derived from average pulse polarization data. Astrophys. J. 553, 341–357 (2001).

    ADS  Article  Google Scholar 

  30. 30.

    Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy Vol. 4 (Cambridge Univ. Press, 2005).

  31. 31.

    Hankins, T. H., Kern, J. S., Weatherall, J. C. & Eilek, J. A. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature 422, 141–143 (2003).

    ADS  Article  Google Scholar 

  32. 32.

    Hankins, T. H. & Eilek, J. A. Radio emission signatures in the Crab pulsar. Astrophys. J. 670, 693–701 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Camilo, F. et al. Transient pulsed radio emission from a magnetar. Nature 442, 892–895 (2006).

    ADS  Article  Google Scholar 

  34. 34.

    Hankins, T. H., Jones, G. & Eilek, J. A. The Crab pulsar at centimeter wavelengths. I. Ensemble characteristics. Astrophys. J. 802, 130 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Hankins, T. H., Eilek, J. A. & Jones, G. The Crab pulsar at centimeter wavelengths. II. Single pulses. Astrophys. J. 833, 47 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Dyks, J., Harding, A. K. & Rudak, B. Relativistic effects and polarization in three high-energy pulsar models. Astrophys. J. 606, 1125–1142 (2004).

    ADS  Article  Google Scholar 

  37. 37.

    Lyutikov, M. Fast radio bursts’ emission mechanism: implication from localization. Astrophys. J. Lett. 838, L13 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Platts, E. et al. A living theory catalogue for fast radio bursts. Phys. Rep. 821, 1–27 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    CHIME/FRB Collaboration.A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    ADS  Article  Google Scholar 

  40. 40.

    Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 587, 59–62 (2020).

    ADS  Article  Google Scholar 

  41. 41.

    Kirsten, F. et al. Detection of two bright radio bursts from magnetar SGR 1935+2154. Nat. Astron. (2020).

  42. 42.

    Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    ADS  Article  Google Scholar 

  44. 44.

    Zhang, B. FRB 121102: a repeatedly combed neutron star by a nearby low-luminosity accreting supermassive black hole. Astrophys. J. Lett. 854, L21 (2018).

    ADS  Article  Google Scholar 

  45. 45.

    Kramer, M., Stappers, B. W., Jessner, A., Lyne, A. G. & Jordan, C. A. Polarized radio emission from a magnetar. Mon. Not. R. Astron. Soc. 377, 107–119 (2007).

    ADS  Article  Google Scholar 

  46. 46.

    Lower, M. E., Shannon, R. M., Johnston, S. & Bailes, M. Spectropolarimetric properties of Swift J1818.0-1607: a 1.4 s radio magnetar. Astrophys. J. Lett. 896, L37 (2020).

    ADS  Article  Google Scholar 

  47. 47.

    Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS  Article  Google Scholar 

  48. 48.

    Lu, W., Kumar, P. & Narayan, R. Fast radio burst source properties from polarization measurements. Mon. Not. R. Astron. Soc. 483, 359–369 (2019).

    ADS  Article  Google Scholar 

  49. 49.

    Beniamini, P., Wadiasingh, Z. & Metzger, B. D. Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. Mon. Not. R. Astron. Soc. 496, 3390–3401 (2020).

    ADS  Article  Google Scholar 

  50. 50.

    Cordes, J. M. & Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 457, 232–257 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Zanazzi, J. J. & Lai, D. Periodic fast radio bursts with neutron star free precession. Astrophys. J. Lett. 892, L15 (2020).

    ADS  Article  Google Scholar 

  52. 52.

    Levin, Y., Beloborodov, A. M. & Bransgrove, A. Precessing flaring magnetar as a source of repeating FRB 180916.J0158+65. Astrophys. J. Lett. 895, L30 (2020).

    ADS  Article  Google Scholar 

  53. 53.

    CHIME/FRB Collaboration.Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020).

    ADS  Article  Google Scholar 

  54. 54.

    Tendulkar, S. P. et al. The 60-pc environment of FRB 20180916B. Astrophys. J. Lett. 908, L12 (2021).

    ADS  Article  Google Scholar 

  55. 55.

    Ioka, K. & Zhang, B. A binary comb model for periodic fast radio bursts. Astrophys. J. Lett. 893, L26 (2020).

    ADS  Article  Google Scholar 

  56. 56.

    Gourdji, K. et al. A sample of low-energy bursts from FRB 121102. Astrophys. J. Lett. 877, L19 (2019).

    ADS  Article  Google Scholar 

  57. 57.

    Pearlman, A. B. et al. Multiwavelength radio observations of two repeating fast radio burst sources: FRB 121102 and FRB 180916.J0158+65. Astrophys. J. Lett. 905, L27 (2020).

    ADS  Article  Google Scholar 

  58. 58.

    Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    ADS  Article  Google Scholar 

  59. 59.

    Heintz, K. E. et al. Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophys. J. 903, 152 (2020).

    ADS  Article  Google Scholar 

  60. 60.

    Hilmarsson, G. H. et al. Rotation measure evolution of the repeating fast radio burst source FRB 121102. Astrophys. J. Lett. 908, L10 (2021).

    ADS  Article  Google Scholar 

  61. 61.

    Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    ADS  Article  Google Scholar 

  62. 62.

    Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).

    ADS  Article  Google Scholar 

  63. 63.

    Bassa, C. G. et al. FRB 121102 is coincident with a star-forming region in its host galaxy. Astrophys. J. Lett. 843, L8 (2017).

    ADS  Article  Google Scholar 

  64. 64.

    Rajwade, K. M. et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 495, 3551–3558 (2020).

    ADS  Article  Google Scholar 

  65. 65.

    Cruces, M. et al. Repeating behaviour of FRB 121102: periodicity, waiting times, and energy distribution. Mon. Not. R. Astron. Soc. 500, 448–463 (2021).

    ADS  Article  Google Scholar 

  66. 66.

    CHIME/FRB Collaboration. A second source of repeating fast radio bursts. Nature 566, 235–238 (2019).

    ADS  Article  Google Scholar 

  67. 67.

    Macquart, J.-P. et al. A census of baryons in the Universe from localized fast radio bursts. Nature 581, 391–395 (2020).

    ADS  Article  Google Scholar 

  68. 68.

    Rickett, B. J. Amplitude-modulated noise: an empirical model for the radio radiation received from pulsars. Astrophys. J. 197, 185–191 (1975).

    ADS  Article  Google Scholar 

  69. 69.

    Cordes, J. M. Pulsar radiation as polarized shot noise. Astrophys. J. 210, 780–791 (1976).

    ADS  Article  Google Scholar 

  70. 70.

    Huppenkothen, D. et al. Stingray: a modern Python library for spectral timing. Astrophys. J. 881, 39 (2019).

    ADS  Article  Google Scholar 

  71. 71.

    Cenko, S. B. et al. Unveiling the origin of GRB 090709A: lack of periodicity in a reddened cosmological long-duration gamma-ray burst. Astron. J. 140, 224–234 (2010).

    ADS  Article  Google Scholar 

  72. 72.

    McHardy, I. M., Koerding, E., Knigge, C., Uttley, P. & Fender, R. P. Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730–732 (2006).

    ADS  Article  Google Scholar 

  73. 73.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Article  Google Scholar 

  74. 74.

    van der Klis, M. in Compact Stallar X-ray Sources Vol. 39 (eds Lewin, W. & van der Klis, M.) 39–112. (Cambridge Univ. Press, 2006).

  75. 75.

    Remillard, R. A., McClintock, J. E., Orosz, J. A. & Levine, A. M. The X-ray outburst of H1743-322 in 2003: high-frequency QPOs with a 3:2 frequency ratio. Astrophys. J. 637, 1002–1009 (2006).

    ADS  Article  Google Scholar 

  76. 76.

    Israel, G. L. et al. The discovery of rapid X-ray oscillations in the tail of the SGR 1806-20 hyperflare. Astrophys. J. Lett. 628, L53–L56 (2005).

    ADS  Article  Google Scholar 

  77. 77.

    Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L. & Siemiginowska, A. Statistics, handle with care: detecting multiple model components with the likelihood ratio test. Astrophys. J. 571, 545–559 (2002).

    ADS  Article  Google Scholar 

  78. 78.

    van Straten, W., Manchester, R. N., Johnston, S. & Reynolds, J. E. PSRCHIVE and PSRFITS: definition of the Stokes parameters and instrumental basis conventions. Publ. Astron. Soc. Aust. 27, 104–119 (2010).

    ADS  Article  Google Scholar 

  79. 79.

    Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization determinations of 33 pulsars using the Green Bank Telescope. Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015).

    ADS  Article  Google Scholar 

  80. 80.

    Gould, D. M. & Lyne, A. G. Multifrequency polarimetry of 300 radio pulsars. Mon. Not. R. Astron. Soc. 301, 235–260 (1998).

    ADS  Article  Google Scholar 

  81. 81.

    Arzoumanian, Z., Nice, D. J., Taylor, J. H. & Thorsett, S. E. Timing Behavior of 96 Radio Pulsars. Astrophys. J. 422, 671–680 (1994).

    ADS  Article  Google Scholar 

Download references


We thank P. Kumar, B. Metzger, L. Sironi, M. Lyutikov, M. van der Klis and P. Uttley for helpful discussions. The EVN is a joint facility of independent European, African, Asian and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from EVN project code EM135. This work was also based on simultaneous EVN and PSRIX data-recording observations with the 100 m telescope of the Max-Planck-Institut für Radioastronomie at Effelsberg, and we thank the local staff for this arrangement. J.W.T.H. acknowledges funding from the Netherlands Organisation for Scientific Research under a Vici grant (‘AstroFlash’, VI.C.192.045). F.K. acknowledges support from the Swedish Research Council. B.M. acknowledges support from the Spanish Ministerio de Economía y Competitividad (MINECO) under grant no. AYA2016-76012-C3-1-P and from the Spanish Ministerio de Ciencia e Innovación under grant nos. PID2019-105510GB-C31 and CEX2019-000918-M of ICCUB (Unidad de Excelencia ‘María de Maeztu’ 2020–2023).

Author information




K.N. discovered the signals, led the data analysis, made the figures, and wrote most of the manuscript. J.W.T.H. guided the work and made important contributions to the writing and interpretation. A.K. performed pre-processing of the EVN voltage data. All other authors contributed significantly to aspects of the data acquisition, analysis strategy or interpretation.

Corresponding author

Correspondence to K. Nimmo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Hyerin Cho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Autocorrelation functions (ACFs) and power spectra for B4-sb1 and B3.

The temporal profiles of bursts B4-sb1 (top frame) and B3 (bottom frame) are shown in the top left of each frame (panels a and e). The corresponding ACF of these temporal profiles are shown in panels b and f. The corresponding power spectra of the temporal profiles are shown in panels c and g, and the orange line is the power spectrum downsampled in frequency by a factor of 3. Overplotted in pink on the power spectrum is the best fit power law plus white noise component. Panels d and h are the residuals (2 × power spectrum/best fit model).

Extended Data Fig. 2 Before and after calibrating the polarisation data of PSR B2111+46.

The average polarisation profiles (panels b and d) and polarisation position angle (panels a and c) of PSR B2111+46. Black represents the Stokes I profile, red is the unbiased linear polarisation profile (defined in Everett & Weisberg29, and rewritten here in Equation 1), and blue is the circular polarisation (Stokes V) profile. Panels a and b show the polarisation profile and position angle after Faraday-correcting to the true rotation measure79 of PSR B2111+46 (-218.7 rad m−2); here we are not correcting for the instrumental delay between polarisation hands. Panels c and d are Faraday-corrected with the rotation measure determined using the PSRCHIVE tool rmfit, which, in essence, accounts for the instrumental delay. For comparison, we plot the profile and position angle from the literature using more transparent colours80. This illustrates the calibration we applied to the bursts from FRB 20180916B.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nimmo, K., Hessels, J.W.T., Keimpema, A. et al. Highly polarized microstructure from the repeating FRB 20180916B. Nat Astron (2021).

Download citation

Further reading

  • LOFAR Detection of 110–188 MHz Emission and Frequency-dependent Activity from FRB 20180916B

    • Z. Pleunis
    • , D. Michilli
    • , C. G. Bassa
    • , J. W. T. Hessels
    • , A. Naidu
    • , B. C. Andersen
    • , P. Chawla
    • , E. Fonseca
    • , A. Gopinath
    • , V. M. Kaspi
    • , V. I. Kondratiev
    • , D. Z. Li
    • , M. Bhardwaj
    • , P. J. Boyle
    • , C. Brar
    • , T. Cassanelli
    • , Y. Gupta
    • , A. Josephy
    • , R. Karuppusamy
    • , A. Keimpema
    • , F. Kirsten
    • , C. Leung
    • , B. Marcote
    • , K. W. Masui
    • , R. Mckinven
    • , B. W. Meyers
    • , C. Ng
    • , K. Nimmo
    • , Z. Paragi
    • , M. Rahman
    • , P. Scholz
    • , K. Shin
    • , K. M. Smith
    • , I. H. Stairs
    •  & S. P. Tendulkar

    The Astrophysical Journal Letters (2021)


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing