Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon

An Author Correction to this article was published on 06 April 2021

This article has been updated


Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way1,2. Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays3,4, but theoretically it is difficult to accelerate protons to PeV energies5,6 and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region9. Here, we report observations of 1–100 TeV γ rays coming from the ‘Cygnus Cocoon’10, which is a superbubble that surrounds a region of massive star formation. These γ rays are likely produced by 10–1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Significance map of the Cocoon region before and after subtraction of the known sources at the region.
Fig. 2: Spectral energy distribution of the γ-ray emission and cosmic ray density at the Cocoon region.

Data availability

The datasets analysed during this study and the scripts used are available at a public data repository (

Code availability

The study was carried out by using the Analysis and Event Reconstruction Integrated Environment Likelihood Fitting Framework (AERIE-LiFF), the Multi-Mission Maximum Likelihood (3ML) software and the HAWC Accelerated Likelihood (HAL) framework. The code is open-source and publicly available on Github at, and The software includes instructions on installation and usage.

Change history


  1. Hillas, A. M. in Composition and Origin of Cosmic Rays (ed. Shapiro, M. M.) 125 (D. Reidel, 1983).

  2. Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A. & Ptuskin, V. S. in Astrophysics of Cosmic Rays (ed. Ginzburg, V. L.) (North Holland, 1990).

  3. Baade, W. & Zwicky, F. Cosmic rays from super-novae. Proc. Natl Acad. Sci. USA 20, 259–263 (1934).

    ADS  Google Scholar 

  4. Hörandel, J. R. Models of the knee in the energy spectrum of cosmic rays. Astropart. Phys. 21, 241–265 (2004).

    ADS  Google Scholar 

  5. Bell, A. R., Schure, K. M., Reville, B. & Giacinti, G. Cosmic ray acceleration and escape from supernova remnants. Mon. Not. R. Astron. Soc. 431, 415–429 (2013).

    ADS  Google Scholar 

  6. Aharonian, F. A. Gamma rays from supernova remnants. Astropart. Phys. 43, 71–80 (2013).

    ADS  Google Scholar 

  7. Helder, E. A. et al. Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. 173, 369–431 (2012).

    ADS  Google Scholar 

  8. Funk, S. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1737–1736 (Springer, 2017).

  9. Abramowski, A. et al. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531, 476–479 (2016).

    ADS  Google Scholar 

  10. Ackermann, M. et al. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334, 1103–1107 (2011).

    ADS  Google Scholar 

  11. Abeysekara, A. U. et al. The 2HWC HAWC observatory gamma-ray catalog. Astrophys. J. 843, 40 (2017).

    ADS  Google Scholar 

  12. Aharonian, F. et al. An unidentified TeV source in the vicinity of Cygnus OB2. Astron. Astrophys. 393, L37–L40 (2002).

    ADS  Google Scholar 

  13. Aharonian, F. et al. The unidentified TeV source (TeV J2032+4130) and surrounding field: final HEGRA IACT-system results. Astron. Astrophys. 431, 197–202 (2005).

    ADS  Google Scholar 

  14. Bartoli, B. et al. Identification of the Tev gamma-ray source ARGO J2031+4157 with the Cygnus Cocoon. Astrophys. J. 790, 152 (2014).

    ADS  Google Scholar 

  15. Abdollahi, S. et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).

    ADS  Google Scholar 

  16. Taylor, A. R. et al. The Canadian Galactic Plane Survey. Astron. J. 125, 3145–3164 (2003).

    ADS  Google Scholar 

  17. Mizuno, T. et al. Suzaku observation of the Fermi Cygnus Cocoon: the search for a signature of young cosmic-ray electrons. Astrophys. J. 803, 74 (2015).

    ADS  Google Scholar 

  18. Aguilar, M. et al. Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 114, 171103 (2015).

    ADS  Google Scholar 

  19. Aharonian, F., Yang, R. & de Oña Wilhelmi, E. Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 3, 561–567 (2019).

    ADS  Google Scholar 

  20. Aharonian, F. in Astrophysics at Very High Energies (eds Walter, R. & Türler, M.) 1–120 (Springer, 2013).

  21. Wright, N. J., Drew, J. E. & Mohr-Smith, M. The massive star population of Cygnus OB2. Mon. Not. R. Astron. Soc. 449, 741–760 (2015).

    ADS  Google Scholar 

  22. Butt, Y. Beyond the myth of the supernova-remnant origin of cosmic rays. Nature 460, 701–704 (2009).

    ADS  Google Scholar 

  23. Knödlseder, J. Cygnus OB2 – a young globular cluster in the Milky Way. Astron. Astrophys. 360, 539–548 (2000).

    ADS  Google Scholar 

  24. Wright, N. J., Drake, J. J., Drew, J. E. & Vink, J. S. The massive star-forming region Cygnus OB2. II. Integrated stellar properties and the star formation history. Astrophys. J. 713, 871–882 (2010).

    ADS  Google Scholar 

  25. Pinat, E. & Sánchez, J. A. A. Search for extended sources of neutrino emission with 7 years of IceCube data. In Proc. 35th International Cosmic Ray Conference (ICRC2017) 963 (PoS, 2017).

  26. Aartsen, M.G. et al. IceCube-Gen2: The Window to the Extreme Universe. Preprint at (2020).

  27. Schoorlemmer, H. A next-generation ground-based wide field-of-view gamma-ray observatory in the southern hemisphere. In Proc. 36th International Cosmic Ray Conference (ICRC2019) 785 (PoS, 2019).

  28. Neronov, A. & Semikoz, D. LHAASO telescope sensitivity to diffuse gamma-ray signals from the Galaxy. Phys. Rev. D 102, 043025 (2020).

    ADS  Google Scholar 

  29. Abeysekara, A. U. et al. Measurement of the Crab Nebula spectrum past 100 TeV with HAWC. Astrophys. J. 881, 134 (2019).

    ADS  Google Scholar 

  30. Abeysekara, A. U. et al. Observation of the Crab Nebula with the HAWC gamma-ray observatory. Astrophys. J. 843, 39 (2017).

    ADS  Google Scholar 

  31. Vianello, G. et al. The Multi-Mission Maximum Likelihood framework (3ML). In Proc. 7th International Fermi Symposium (IFS2017) 238 (PoS, 2015).

  32. Abeysekara, A. U. et al. Multiple galactic sources with emission above 56 TeV detected by HAWC. Phys. Rev. Lett. 124, 021102 (2020).

    ADS  Google Scholar 

  33. Hona, B. Testing the limits of particle acceleration in Cygnus OB2 with HAWC. In Proc. 36th International Cosmic Ray Conference (ICRC2019) 699 (PoS, 2019).

  34. Lang, M. J. et al. Evidence for TeV gamma ray emission from TeV J2032+4130 in Whipple archival data. Astron. Astrophys. 423, 415–419 (2004).

    ADS  Google Scholar 

  35. Albert, J. et al. MAGIC observations of the unidentified γ-ray source TeV J2032+4130. Astrophys. J. Lett. 675, L25 (2008).

    ADS  Google Scholar 

  36. Abdo, A. A. et al. Spectrum and morphology of the two brightest Milagro sources in the Cygnus region: MGRO J2019+37 and MGRO J2031+41. Astrophys. J. 753, 159 (2012).

    ADS  Google Scholar 

  37. Aliu, E. et al. Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS. Astrophys. J. 783, 16 (2014).

    ADS  Google Scholar 

  38. Aliu, E. et al. Discovery of TeV gamma-ray emission toward supernova remnant SNR G78.2+2.1. Astrophys. J. 770, 93 (2013).

    ADS  Google Scholar 

  39. Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

    MATH  Google Scholar 

  40. Fleischhack, H. et al. Modeling the non-thermal emission of the gamma Cygni Supernova Remnant up to the highest energies. In Proc. 36th International Cosmic Ray Conference (ICRC2019) 675 (2020).

  41. Abeysekara, A. U. et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at earth. Science 358, 911–914 (2017).

    ADS  Google Scholar 

  42. Knödlseder, J. et al. Gamma-ray line emission from OB associations and young open clusters. II. The Cygnus region. Astron. Astrophys. 390, 945–960 (2002).

    ADS  Google Scholar 

  43. Dermer, C. D. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation. Astron. Astrophys. 157, 223–229 (1986).

    ADS  Google Scholar 

  44. Kafexhiu, E., Aharonian, F., Taylor, A. M. & Vila, G. S. Parametrization of gamma-ray production cross sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D 90, 123014 (2014).

    ADS  Google Scholar 

  45. Kelner, S. R., Aharonian, F. A. & Bugayov, V. V. Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D 74, 034018 (2006).

    ADS  Google Scholar 

  46. Syrovatskii, S. I. The distribution of relativistic electrons in the galaxy and the spectrum of synchrotron radio emission. Sov. Astron. 3, 22 (1959).

    ADS  Google Scholar 

  47. Drury, L. O’C. Origin of cosmic rays. Astropart. Phys. 39, 52–60 (2012).

    ADS  Google Scholar 

  48. Mel’nik, A. M. & Efremov, Y. N. A new list of OB associations in our Galaxy. Astron. Lett. 21, 10–26 (1995).

    ADS  Google Scholar 

  49. Kharchenko, N. V., Piskunov, A. E., Schilbach, E., Röser, S. & Scholz, R. D. Global survey of star clusters in the Milky Way. II. The catalogue of basic parameters. Astron. Astrophys. 558, A53 (2013).

    ADS  Google Scholar 

  50. Prosekin, A. Y., Kelner, S. R. & Aharonian, F. A. Transition of propagation of relativistic particles from the ballistic to the diffusion regime. Phys. Rev. D 92, 083003 (2015).

    ADS  Google Scholar 

  51. Ajello, M. et al. 3FHL: the Third Catalog of Hard Fermi-LAT Sources. Astrophys. J. Suppl. Ser. 232, 18 (2017).

    ADS  Google Scholar 

Download references


We acknowledge the support from the United States National Science Foundation; the United States Department of Energy Office of High-Energy Physics; the Laboratory Directed Research and Development program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnología in Mexico, grant nos. 271051, 232656, 260378, 179588, 254964, 258865, 243290, 132197, A1-S-46288 and A1-S-22784, cátedras 873, 1563, 341 and 323, Red HAWC, Mexico; Dirección General Asuntos del Personal Académico, Universidad Nacional Autónoma de México, grant nos. IG101320, IN111315, IN111716-3, IN111419, IA102019 and IN112218; Vicerrectoría de Investigación y Estudios de Posgrado de la Benemérita Universidad Autónoma de Puebla; Programa Integral de Fortalecimiento Institucional (PIFI) 2012–2013 and Programa de Fortalecimiento de la Calidad Educativa (PROFOCIE) 2014–2015; the University of Wisconsin Alumni Research Foundation; the Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; the Polish Science Centre, grant no. DEC-2017/27/B/ST9/02272; Coordinación de la Investigación Científica de la Universidad Michoacana; Coordinación General Académica y de Innovación (CGAI-UDG; SEP-PRODEP-UDG-CA-499); the Royal Society, Newton Advanced Fellowship 180385; and Generalitat Valenciana, grant no. CIDEGENT/2018/034. We thank S. Delay, L. Díaz and E. Murrieta for technical support, and thank S. Digel for helpful discussion regarding the source modelling of the Cygnus Cocoon region in the Fermi 4FGL catalogue.

Author information

Authors and Affiliations



B.H. analysed the HAWC data and performed the maximum-likelihood fit of the multi-source model, the hadronic model fit and the cosmic ray density study. H.F. and P.H. helped in the development of the multi-source model and in the scientific interpretations of the fit results. K.F. and R.B. helped develop the hadronic emission models and helped in the interpretations of the model fit results. K.F. also developed the leptonic emission model and provided its interpretations. S.C. motivated the Cocoon analysis, helped with the interpretations of the leptonic model and performed the diffusion coefficient suppression study at the Cocoon region. B.H., K.F. and S.C. prepared the manuscript. The full HAWC Collaboration group contributed through the construction, calibration and operation of the detector, the development and maintenance of reconstruction and analysis software, and the vetting of the analysis presented in this manuscript. All authors reviewed, discussed and commented on the results and the manuscript.

Corresponding authors

Correspondence to R. Blandford, S. Casanova, K. Fang, H. Fleischhack, B. Hona or P. Hüntemeyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Songzhan Chen, Emma de Oña Wilhelmi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Leptonic modelling at the Cocoon region.

Multi-wavelength observations of the Cygnus Cocoon (15; 17; 19) constrain the Synchrotron and Bremsstrahlung radiation of relativistic electrons. The light grey curves correspond to a ‘minimum leptonic model’, where only γ-rays above 1 TeV are explained by electron emission. The electron population is assumed to follow a power-law energy spectrum dN/dE E−2 in a region with magnetic field B= 20 μG and gas density n = 30cm−3 as in the Cocoon (10). The leptonic emission consists of the Synchroton radiation (solid, from radio to hard X-ray), Bremsstrahlung emission (thick dash-dotted), and inverse-Compton scattering of the dust emission in the Cocoon (dashed) and the radiation fields of the two stellar clusters, NGC 6910 (thin dash-dotted) and OB2 (dotted). Observations between 0.1-100 GeV are explained by hadronic interaction (black dashed curve). The red points are the GeV flux points by Fermi-LAT and the blue circles are the HAWC flux points with 1σ statistical errors. The sum of the emission above ~ 0.3 GeV is indicated by the black solid curve. In the inner plot, the blue circles indicate the γ-ray luminosity for the four rings at the Cocoon region and the light grey solid curve is the TeV γ-ray luminosity from the model.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abeysekara, A.U., Albert, A., Alfaro, R. et al. HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nat Astron 5, 465–471 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing