Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MULTI-MESSENGER ASTRONOMY

Neutrinos from tidal disruption events

Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they emit bright multi-wavelength flares that last several months to years. AT2019dsg represents the first potential association of neutrino emission with such an explosive event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: An illustration of the disk-outflow-jet system formed after the tidal disruption of a star, as in the case of AT2019dsg.

References

  1. 1.

    Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, 1972).

  2. 2.

    Alpher, R. A., Follin, J. W. Jr. & Herman, R. C. Phys. Rev. 92, 1347 (1953).

    ADS  Article  Google Scholar 

  3. 3.

    The IceCube Collaboration. et al. Science 361, eaat1378 (2018).

    ADS  Article  Google Scholar 

  4. 4.

    Koshiba, M. Phys. Rep. 220, 229–381 (1992).

    ADS  Article  Google Scholar 

  5. 5.

    Stein, R. et al. Nat. Astron. https://doi.org/10.1038/s41550-020-01295-8 (2021).

  6. 6.

    Rees, M. J. Nature 333, 523–528 (1988).

    ADS  Article  Google Scholar 

  7. 7.

    van Velzen, S., Holoien, T. W.-S., Onori, F., Hung, T. & Arcavi, I. Space Sci. Rev. 216, 124 (2020).

    ADS  Article  Google Scholar 

  8. 8.

    Alexander, K. D., van Velzen, S., Horesh, A. & Zauderer, B. A. Space Sci. Rev. 216, 81 (2020).

    ADS  Article  Google Scholar 

  9. 9.

    Winter, W. & Lunardini, C. Nat. Astron. https://doi.org/10.1038/s41550-021-01305-3 (2021).

  10. 10.

    Stone, N. C. et al. Space Sci. Rev. 216, 35 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    Liu, R.-Y., Xi, S.-Q. & Wang, X.-Y. Phys. Rev. D. 102, 083028 (2020).

    ADS  Article  Google Scholar 

  12. 12.

    Murase, K., Kimura, S. S., Zhang, B. T., Oikonomou, F. & Petropoulou, M. Astrophys. J. 902, 108 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Hayasaki, K. & Yamazaki, R. Astrophys. J. 886, 114 (2019).

    ADS  Article  Google Scholar 

  14. 14.

    Aartsen, M. G. et al. Preprint at https://arxiv.org/abs/1911.02561 (2019).

  15. 15.

    Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. Astrophys. J. Lett. 859, L20 (2018).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kimitake Hayasaki.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayasaki, K. Neutrinos from tidal disruption events. Nat Astron (2021). https://doi.org/10.1038/s41550-021-01309-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing