Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

MULTI-MESSENGER ASTRONOMY

Neutrinos from tidal disruption events

Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they emit bright multi-wavelength flares that last several months to years. AT2019dsg represents the first potential association of neutrino emission with such an explosive event.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An illustration of the disk-outflow-jet system formed after the tidal disruption of a star, as in the case of AT2019dsg.

References

  1. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, 1972).

  2. Alpher, R. A., Follin, J. W. Jr. & Herman, R. C. Phys. Rev. 92, 1347 (1953).

    Article  ADS  Google Scholar 

  3. The IceCube Collaboration. et al. Science 361, eaat1378 (2018).

    Article  ADS  Google Scholar 

  4. Koshiba, M. Phys. Rep. 220, 229–381 (1992).

    Article  ADS  Google Scholar 

  5. Stein, R. et al. Nat. Astron. https://doi.org/10.1038/s41550-020-01295-8 (2021).

  6. Rees, M. J. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  7. van Velzen, S., Holoien, T. W.-S., Onori, F., Hung, T. & Arcavi, I. Space Sci. Rev. 216, 124 (2020).

    Article  ADS  Google Scholar 

  8. Alexander, K. D., van Velzen, S., Horesh, A. & Zauderer, B. A. Space Sci. Rev. 216, 81 (2020).

    Article  ADS  Google Scholar 

  9. Winter, W. & Lunardini, C. Nat. Astron. https://doi.org/10.1038/s41550-021-01305-3 (2021).

  10. Stone, N. C. et al. Space Sci. Rev. 216, 35 (2020).

    Article  ADS  Google Scholar 

  11. Liu, R.-Y., Xi, S.-Q. & Wang, X.-Y. Phys. Rev. D. 102, 083028 (2020).

    Article  ADS  Google Scholar 

  12. Murase, K., Kimura, S. S., Zhang, B. T., Oikonomou, F. & Petropoulou, M. Astrophys. J. 902, 108 (2020).

    Article  ADS  Google Scholar 

  13. Hayasaki, K. & Yamazaki, R. Astrophys. J. 886, 114 (2019).

    Article  ADS  Google Scholar 

  14. Aartsen, M. G. et al. Preprint at https://arxiv.org/abs/1911.02561 (2019).

  15. Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. Astrophys. J. Lett. 859, L20 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimitake Hayasaki.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayasaki, K. Neutrinos from tidal disruption events. Nat Astron 5, 436–437 (2021). https://doi.org/10.1038/s41550-021-01309-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01309-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing