Abstract
Millisecond spinning, low-magnetic-field neutron stars are believed to attain their fast rotation in a 0.1–1-Gyr-long phase during which they accrete matter endowed with angular momentum from a low-mass companion star1. Despite extensive searches, coherent periodicities originating from accreting neutron star magnetospheres have been detected only at X-ray energies2 and in ~10% of the currently known systems3. Here we report the detection of optical and ultraviolet coherent pulsations at the X-ray period of the transient low-mass X-ray binary system SAX J1808.4−3658, during an accretion outburst that occurred in August 20194. At the time of the observations, the pulsar was surrounded by an accretion disk, displayed X-ray pulsations and its luminosity was consistent with magnetically funnelled accretion onto the neutron star. Current accretion models fail to account for the luminosity of both optical and ultraviolet pulsations; these are instead more likely to be driven by synchro-curvature radiation5,6 in the pulsar magnetosphere or just outside of it. This interpretation would imply that particle acceleration can take place even when mass accretion is going on, and opens up new perspectives in the study of coherent optical/ultraviolet pulsations from fast-spinning accreting neutron stars in low-mass X-ray binary systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Source data are provided with this paper. The barycentered SiFAP2 data that support the findings of this study are available in figshare at https://doi.org/10.6084/m9.figshare.12707444.
References
Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. A new class of radio pulsars. Nature 300, 728–730 (1982).
Wijnands, R. & van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature 394, 344–346 (1998).
Campana, S. & Di Salvo, T. Accreting pulsars: mixing-up accretion phases in transitional systems. Astrophys. Space Sci. Library 457, 149–184 (2018).
Bult, P. et al. Timing the pulsations of the accreting millisecond pulsar SAX J1808.4−3658 during its 2019 outburst. Astrophys. J. 898, 38 (2020).
Torres, D. F. Order parameters for the high-energy spectra of pulsars. Nat. Astron. 2, 247–256 (2018).
Harding, A. K., Kalapotharakos, C., Barnard, M. & Venter, C. Multi-TeV emission from the Vela pulsar. Astrophys. J. Lett. 869, L18 (2018).
Chakrabarty, D. & Morgan, E. H. The two-hour orbit of a binary millisecond X-ray pulsar. Nature 394, 346–348 (1998).
Archibald, A. M. et al. A radio pulsar/X-ray binary link. Science 324, 1411–1414 (2009).
Papitto, A. et al. Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501, 517–520 (2013).
Watts, A. L. et al. Colloquium: measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 88, 021001 (2016).
Wijnands, R. in Trends in Pulsar Research (ed. Lowry, J. A.) Ch. 3 (Nova Science, 2006).
Patruno, A. & Watts, A. L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions (eds Belloni, T. et al.) 143–208 (Springer, 2021).
Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). Astron. Astrophys. 469, 807–810 (2007).
Ambrosino, F. et al. Optical pulsations from a transitional millisecond pulsar. Nat. Astron. 1, 854–858 (2017).
Papitto, A. et al. Pulsating in unison at optical and X-ray energies: simultaneous high time resolution observations of the transitional millisecond pulsar PSR J1023+0038. Astrophys. J. 882, 104 (2019).
Veledina, A., Nättilä, J. & Beloborodov, A. M. Pulsar wind-heated accretion disk and the origin of modes in transitional millisecond pulsar PSR J1023+0038. Astrophys. J. 884, 144 (2019).
Campana, S. et al. Probing X-ray emission in different modes of PSR J1023+0038 with a radio pulsar scenario. Astron. Astrophys. 629, L8 (2019).
Wang, Z. et al. Multiband studies of the optical periodic modulation in the X-ray binary SAX J1808.4−3658 during its quiescence and 2008 outburst. Astrophys. J. 765, 151 (2013).
Galloway, D. K. & Cumming, A. Helium-rich thermonuclear bursts and the distance to the accretion-powered millisecond pulsar SAX J1808.4−3658. Astrophys. J. 652, 559–568 (2006).
Gilfanov, M. et al. The millisecond X-ray pulsar/burster SAX J1808.4−3658: the outburst light curve and the power law spectrum. Astron. Astrophys. 338, L83–L86 (1998).
Stella, L., Campana, S., Mereghetti, S., Ricci, D. & Israel, G. L. The discovery of quiescent X-ray emission from SAX J1808.4−3658, the transient 2.5 millisecond pulsar. Astrophys. J. Lett. 537, L115–L118 (2000).
Giles, A. B., Hill, K. M. & Greenhill, J. G. The optical counterpart of SAX J1808.4−3658, the transient bursting millisecond X-ray pulsar. Mon. Not. R. Astron. Soc. 304, 47–51 (1999).
Gierliński, M., Done, C. & Barret, D. Phase-resolved X-ray spectroscopy of the millisecond pulsar SAX J1808.4−3658. Mon. Not. R. Astron. Soc. 331, 141–153 (2002).
Burderi, L. et al. Order in the chaos: spin-up and spin-down during the 2002 outburst of SAX J1808.4−3658. Astrophys. J. Lett. 653, L133–L136 (2006).
Thompson, A. M. & Cawthorne, T. V. Cyclotron emission from white dwarf accretion columns. Mon. Not. R. Astron. Soc. 224, 425–434 (1987).
Basko, M. M. & Sunyaev, R. A. Radiative transfer in a strong magnetic field and accreting X-ray pulsars. Astron. Astrophys. 42, 311–321 (1975).
Melrose, D. B. Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1, 5 (2017).
Pacini, F. & Salvati, M. The optical luminosity of very fast pulsars. Astrophys. J. 274, 369–371 (1983).
Mignani, R. P. Optical, ultraviolet, and infrared observations of isolated neutron stars. Adv. Space Res. 47, 1281–1293 (2011).
Parfrey, K. & Tchekhovskoy, A. General-relativistic simulations of four states of accretion onto millisecond pulsars. Astrophys. J. Lett. 851, L34 (2017).
Parfrey, K., Spitkovsky, A. & Beloborodov, A. M. Torque enhancement, spin equilibrium, and jet power from disk-induced opening of pulsar magnetic fields. Astrophys. J. 822, 33 (2016).
Kluźniak, W. & Rappaport, S. Magnetically torqued thin accretion disks. Astrophys. J. 671, 1990–2005 (2007).
Coroniti, F. V. Magnetically striped relativistic magnetohydrodynamic winds: the Crab Nebula revisited. Astrophys. J. 349, 538 (1990).
Kirk, J. G., Skjæraasen, O. & Gallant, Y. A. Pulsed radiation from neutron star winds. Astron. Astrophys. Lett. 388, L29–L32 (2002).
Rybicki, G. B. & Lightman, A. P. Radiative Processes In Astrophysics (Wiley, 1979).
Ghedina, A. et al. SiFAP2: a new versatile configuration at the TNG for the MPPC based photometer. Proc. SPIE 10702, 107025Q (2018).
Meddi, F. et al. A new fast silicon photomultiplier photometer. Publ. Astron. Soc. Pac. 124, 448–453 (2012).
Ambrosino, F. et al. The latest version of SiFAP: beyond microsecond time scale photometry of variable objects. J. Astron. Instrum. 5, 1650005 (2016).
Hartman, J. M. et al. The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4−3658. Astrophys. J. 675, 1468–1486 (2008).
Gendreau, K. C. et al. The Neutron star Interior Composition Explorer (NICER): design and development. Proc. SPIE 9905, 99051H (2016).
Gendreau, K. & Arzoumanian, Z. Searching for a pulse. Nat. Astron. 1, 895 (2017).
Papitto, A. et al. Spin down during quiescence of the fastest known accretion-powered pulsar. Astron. Astrophys. 528, A55 (2011).
Leahy, D. A., Elsner, R. F. & Weisskopf, M. C. On searches for periodic pulsed emission—the Rayleigh test compared to epoch folding. Astrophys. J. 272, 256–258 (1983).
Leahy, D. A. Searches for pulsed emission—improved determination of period and amplitude from epoch folding for sinusoidal signals. Astron. Astrophys. 180, 275–277 (1987).
Buccheri, R. et al. Search for pulsed γ-ray emission from radio pulsars in the COS-B data. Astron. Astrophys. 128, 245–251 (1983).
Foight, D. R., Güver, T., Özel, F. & Slane, P. O. Probing X-ray absorption and optical extinction in the interstellar medium using Chandra observations of supernova remnants. Astrophys. J. 826, 66 (2016).
Di Salvo, T. et al. NuSTAR and XMM-Newton broad-band spectrum of SAX J1808.4-3658 during its latest outburst in 2015. Mon. Not. R. Astron. Soc. 483, 767–779 (2019).
Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).
Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).
Elebert, P. et al. Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst. Mon. Not. R. Astron. Soc. 395, 884–894 (2009).
Tudor, V. et al. Disc-jet coupling in low-luminosity accreting neutron stars. Mon. Not. R. Astron. Soc. 470, 324–339 (2017).
Russell, D. M. et al. Optical precursors to X-ray binary outbursts. Astron. Nach. 340, 278–283 (2019).
Pirbhoy, S. F. et al. XB-NEWS detection of a new outburst of MAXI J1348−630. The Astronomer’s Telegram 13451 (2020).
Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).
Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).
Arnaud, K. A. in Astronomical Data Analysis Software and Systems (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).
Życki, P. T., Done, C. & Smith, D. A. The 1989 May outburst of the soft X-ray transient GS 2023+338 (V404 Cyg). Mon. Not. R. Astron. Soc. 309, 561–575 (1999).
Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487 (1996).
Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).
Papitto, A. et al. XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4−3658. Astron. Astrophys. 493, L39–L43 (2009).
Sanna, A. et al. NuSTAR observation of the latest outburst of SAX J1808.4−3658. The Astronomer’s Telegram 13022 (2019).
in ’t Zand, J. J. M. et al. Discovery of the X-ray transient SAX J1808.4−3658, a likely low-mass X-ray binary. Astron. Astrophys. Lett. 331, L25–L28 (1998).
Vrtilek, S. D. et al. Observations of Cygnus X-2 with IUE: ultraviolet results from a multiwavelength campaign. Astron. Astrophys. 235, 162 (1990).
van Paradijs, J. & McClintock, J. E. in X-ray Binaries (eds Lewin, W. H. G. et al.) 58–125 (Cambridge Univ. Press, 1995).
Russell, D. M. et al. Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions. Mon. Not. R. Astron. Soc. 371, 1334–1350 (2006).
Di Salvo, T. & Burderi, L. Constraints on the neutron star magnetic field of the two X-ray transients SAX J1808.4−3658 and Aql X−1. Astron. Astrophys. 397, 723–727 (2003).
Sanna, A. et al. On the timing properties of SAX J1808.4−3658 during its 2015 outburst. Mon. Not. R. Astron. Soc. 471, 463–477 (2017).
Frank, J., King, A. & Raine, D. J. (eds) Accretion Power in Astrophysics (Cambridge Univ. Press, 2002).
Poutanen, J. & Gierliński, M. On the nature of the X-ray emission from the accreting millisecond pulsar SAX J1808.4−3658. Mon. Not. R. Astron. Soc. 343, 1301–1311 (2003).
Romani, R. W. Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys. J. 470, 469 (1996).
Torres, D. F., Viganò, D., Coti Zelati, F. & Li, J. Synchrocurvature modelling of the multifrequency non-thermal emission of pulsars. Mon. Not. R. Astron. Soc. 489, 5494–5512 (2019).
Mignani, R. P. et al. The first ultraviolet detection of the Large Magellanic Cloud pulsar PSR B0540−69 and its multi-wavelength properties. Astrophys. J. 871, 246 (2019).
Acknowledgements
A.M.Z. thanks the HST contact scientist, D. Welty (STScI), for constant support in the observation planning and T. Royle (STScI) for checking the scheduling processes. A.M.Z. thanks A. Riley (STIS Team) for the support in the scientific data analysis. A.M.Z. acknowledges the support of the PHAROS COST Action (CA16214) and A. Ridolfi for his help in data analysis. A.M.Z. would also like to thank G. Benevento for comments on draft. F.C.Z. is supported by a Juan de la Cierva fellowship. S.C. and P.D.A. acknowledge support from ASI grant I/004/11/3. D.d.M., A.P. and L.S. acknowledge financial support from the Italian Space Agency (ASI) and National Institute for Astrophysics (INAF) under agreements ASI-INAF I/037/12/0. L.B., D.d.M., T.D.S., A.P. and L.S. acknowledge financial contributions from ASI-INAF agreement no. 2017-14-H.0, INAF main-stream (principal investigator: T. Belloni; principal investigator: A. De Rosa). D.F.T. acknowledges support from grants PGC2018-095512-B-I00, SGR2017-1383 and AYA2017-92402-EXP. L.B and T.D.S. thank A. Marino for useful discussions and acknowledge financial contributions from the HERMES project financed by the Italian Space Agency (ASI) agreement no. 2016/13 U.O. T.D.S. and L.S. acknowledge the iPeska research grant (principal investigator: A. Possenti) funded under the INAF national call Prin-SKA/CTA approved with the Presidential Decree 70/2016. A.P., F.C.Z., and D.T. acknowledge the International Space Science Institute (ISSI-Beijing), which funded and hosted the international team ‘Understanding and Unifying the Gamma-rays Emitting Scenarios in High Mass and Low Mass X-ray Binaries’. Results obtained with SiFAP2 and presented in this paper are based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). Part of this paper is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. This work also made use of data and software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC).
Author information
Authors and Affiliations
Contributions
F.A., A.M.Z., A.P. and F.C.Z. analysed optical, UV and X-ray data. F.A., A.M.Z., A.P., F.C.Z. and L.S. wrote the paper. A.M.Z., A.P., S.C., P.D.A., F.C.Z., P.C., L.S., T.D.S., L.B., D.d.M., D.F.T., G.L.I. and A.S. interpreted the results. F.A., F.M., P. Cretaro, A.G., F. Leone. and E.P. conceived SiFAP2. A.G., A.P. and F.A. performed the optical observation. A.G., M. Cecconi, M.D.G.G., A.L.R.R., H.P.V., M.H.D. and J.J.S.J. developed the SiFAP2 mechanical interface and its relative control software. M. Cadelano and R.P.M. contributed to the HST data analysis. M.C.B., D.M.R., D.M.B. and F. Lewis. contributed to the optical part of the SED. All authors read, commented on and approved the submission of this article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Lucien Kuiper and Jumpei Takata for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7 and Tables 1–2.
Source data
Source Data Fig. 1
NICER X-ray light curve of SAX J1808.4-3658 data.
Source Data Fig. 2
Fast Fourier transform of both optical and UV datasets. Optical and UV pulse profiles’ data (inset of Fig. 2).
Rights and permissions
About this article
Cite this article
Ambrosino, F., Miraval Zanon, A., Papitto, A. et al. Optical and ultraviolet pulsed emission from an accreting millisecond pulsar. Nat Astron 5, 552–559 (2021). https://doi.org/10.1038/s41550-021-01308-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-021-01308-0