Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

Abstract

Millisecond spinning, low-magnetic-field neutron stars are believed to attain their fast rotation in a 0.1–1-Gyr-long phase during which they accrete matter endowed with angular momentum from a low-mass companion star1. Despite extensive searches, coherent periodicities originating from accreting neutron star magnetospheres have been detected only at X-ray energies2 and in ~10% of the currently known systems3. Here we report the detection of optical and ultraviolet coherent pulsations at the X-ray period of the transient low-mass X-ray binary system SAX J1808.4−3658, during an accretion outburst that occurred in August 20194. At the time of the observations, the pulsar was surrounded by an accretion disk, displayed X-ray pulsations and its luminosity was consistent with magnetically funnelled accretion onto the neutron star. Current accretion models fail to account for the luminosity of both optical and ultraviolet pulsations; these are instead more likely to be driven by synchro-curvature radiation5,6 in the pulsar magnetosphere or just outside of it. This interpretation would imply that particle acceleration can take place even when mass accretion is going on, and opens up new perspectives in the study of coherent optical/ultraviolet pulsations from fast-spinning accreting neutron stars in low-mass X-ray binary systems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: XTI/NICER X-ray light curve (0.5–10 keV) of the August 2019 outburst of SAX J1808.4−3658.
Fig. 2: Detection and shape of coherent optical and UV signals from SAX J1808.4−3658.

Data availability

Source data are provided with this paper. The barycentered SiFAP2 data that support the findings of this study are available in figshare at https://doi.org/10.6084/m9.figshare.12707444.

References

  1. Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. A new class of radio pulsars. Nature 300, 728–730 (1982).

    ADS  Google Scholar 

  2. Wijnands, R. & van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature 394, 344–346 (1998).

    ADS  Google Scholar 

  3. Campana, S. & Di Salvo, T. Accreting pulsars: mixing-up accretion phases in transitional systems. Astrophys. Space Sci. Library 457, 149–184 (2018).

    ADS  Google Scholar 

  4. Bult, P. et al. Timing the pulsations of the accreting millisecond pulsar SAX J1808.4−3658 during its 2019 outburst. Astrophys. J. 898, 38 (2020).

    ADS  Google Scholar 

  5. Torres, D. F. Order parameters for the high-energy spectra of pulsars. Nat. Astron. 2, 247–256 (2018).

    ADS  Google Scholar 

  6. Harding, A. K., Kalapotharakos, C., Barnard, M. & Venter, C. Multi-TeV emission from the Vela pulsar. Astrophys. J. Lett. 869, L18 (2018).

    ADS  Google Scholar 

  7. Chakrabarty, D. & Morgan, E. H. The two-hour orbit of a binary millisecond X-ray pulsar. Nature 394, 346–348 (1998).

    ADS  Google Scholar 

  8. Archibald, A. M. et al. A radio pulsar/X-ray binary link. Science 324, 1411–1414 (2009).

    ADS  Google Scholar 

  9. Papitto, A. et al. Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501, 517–520 (2013).

    ADS  Google Scholar 

  10. Watts, A. L. et al. Colloquium: measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 88, 021001 (2016).

    ADS  Google Scholar 

  11. Wijnands, R. in Trends in Pulsar Research (ed. Lowry, J. A.) Ch. 3 (Nova Science, 2006).

  12. Patruno, A. & Watts, A. L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions (eds Belloni, T. et al.) 143–208 (Springer, 2021).

  13. Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). Astron. Astrophys. 469, 807–810 (2007).

    ADS  Google Scholar 

  14. Ambrosino, F. et al. Optical pulsations from a transitional millisecond pulsar. Nat. Astron. 1, 854–858 (2017).

    ADS  Google Scholar 

  15. Papitto, A. et al. Pulsating in unison at optical and X-ray energies: simultaneous high time resolution observations of the transitional millisecond pulsar PSR J1023+0038. Astrophys. J. 882, 104 (2019).

    ADS  Google Scholar 

  16. Veledina, A., Nättilä, J. & Beloborodov, A. M. Pulsar wind-heated accretion disk and the origin of modes in transitional millisecond pulsar PSR J1023+0038. Astrophys. J. 884, 144 (2019).

    ADS  Google Scholar 

  17. Campana, S. et al. Probing X-ray emission in different modes of PSR J1023+0038 with a radio pulsar scenario. Astron. Astrophys. 629, L8 (2019).

    ADS  Google Scholar 

  18. Wang, Z. et al. Multiband studies of the optical periodic modulation in the X-ray binary SAX J1808.4−3658 during its quiescence and 2008 outburst. Astrophys. J. 765, 151 (2013).

    ADS  Google Scholar 

  19. Galloway, D. K. & Cumming, A. Helium-rich thermonuclear bursts and the distance to the accretion-powered millisecond pulsar SAX J1808.4−3658. Astrophys. J. 652, 559–568 (2006).

    ADS  Google Scholar 

  20. Gilfanov, M. et al. The millisecond X-ray pulsar/burster SAX J1808.4−3658: the outburst light curve and the power law spectrum. Astron. Astrophys. 338, L83–L86 (1998).

    ADS  Google Scholar 

  21. Stella, L., Campana, S., Mereghetti, S., Ricci, D. & Israel, G. L. The discovery of quiescent X-ray emission from SAX J1808.4−3658, the transient 2.5 millisecond pulsar. Astrophys. J. Lett. 537, L115–L118 (2000).

    ADS  Google Scholar 

  22. Giles, A. B., Hill, K. M. & Greenhill, J. G. The optical counterpart of SAX J1808.4−3658, the transient bursting millisecond X-ray pulsar. Mon. Not. R. Astron. Soc. 304, 47–51 (1999).

    ADS  Google Scholar 

  23. Gierliński, M., Done, C. & Barret, D. Phase-resolved X-ray spectroscopy of the millisecond pulsar SAX J1808.4−3658. Mon. Not. R. Astron. Soc. 331, 141–153 (2002).

    ADS  Google Scholar 

  24. Burderi, L. et al. Order in the chaos: spin-up and spin-down during the 2002 outburst of SAX J1808.4−3658. Astrophys. J. Lett. 653, L133–L136 (2006).

    ADS  Google Scholar 

  25. Thompson, A. M. & Cawthorne, T. V. Cyclotron emission from white dwarf accretion columns. Mon. Not. R. Astron. Soc. 224, 425–434 (1987).

    ADS  Google Scholar 

  26. Basko, M. M. & Sunyaev, R. A. Radiative transfer in a strong magnetic field and accreting X-ray pulsars. Astron. Astrophys. 42, 311–321 (1975).

    ADS  Google Scholar 

  27. Melrose, D. B. Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1, 5 (2017).

    ADS  Google Scholar 

  28. Pacini, F. & Salvati, M. The optical luminosity of very fast pulsars. Astrophys. J. 274, 369–371 (1983).

    ADS  Google Scholar 

  29. Mignani, R. P. Optical, ultraviolet, and infrared observations of isolated neutron stars. Adv. Space Res. 47, 1281–1293 (2011).

    ADS  Google Scholar 

  30. Parfrey, K. & Tchekhovskoy, A. General-relativistic simulations of four states of accretion onto millisecond pulsars. Astrophys. J. Lett. 851, L34 (2017).

    ADS  Google Scholar 

  31. Parfrey, K., Spitkovsky, A. & Beloborodov, A. M. Torque enhancement, spin equilibrium, and jet power from disk-induced opening of pulsar magnetic fields. Astrophys. J. 822, 33 (2016).

    ADS  Google Scholar 

  32. Kluźniak, W. & Rappaport, S. Magnetically torqued thin accretion disks. Astrophys. J. 671, 1990–2005 (2007).

    ADS  Google Scholar 

  33. Coroniti, F. V. Magnetically striped relativistic magnetohydrodynamic winds: the Crab Nebula revisited. Astrophys. J. 349, 538 (1990).

    ADS  Google Scholar 

  34. Kirk, J. G., Skjæraasen, O. & Gallant, Y. A. Pulsed radiation from neutron star winds. Astron. Astrophys. Lett. 388, L29–L32 (2002).

    ADS  Google Scholar 

  35. Rybicki, G. B. & Lightman, A. P. Radiative Processes In Astrophysics (Wiley, 1979).

  36. Ghedina, A. et al. SiFAP2: a new versatile configuration at the TNG for the MPPC based photometer. Proc. SPIE 10702, 107025Q (2018).

    Google Scholar 

  37. Meddi, F. et al. A new fast silicon photomultiplier photometer. Publ. Astron. Soc. Pac. 124, 448–453 (2012).

    ADS  Google Scholar 

  38. Ambrosino, F. et al. The latest version of SiFAP: beyond microsecond time scale photometry of variable objects. J. Astron. Instrum. 5, 1650005 (2016).

    Google Scholar 

  39. Hartman, J. M. et al. The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4−3658. Astrophys. J. 675, 1468–1486 (2008).

    ADS  Google Scholar 

  40. Gendreau, K. C. et al. The Neutron star Interior Composition Explorer (NICER): design and development. Proc. SPIE 9905, 99051H (2016).

    Google Scholar 

  41. Gendreau, K. & Arzoumanian, Z. Searching for a pulse. Nat. Astron. 1, 895 (2017).

    ADS  Google Scholar 

  42. Papitto, A. et al. Spin down during quiescence of the fastest known accretion-powered pulsar. Astron. Astrophys. 528, A55 (2011).

    Google Scholar 

  43. Leahy, D. A., Elsner, R. F. & Weisskopf, M. C. On searches for periodic pulsed emission—the Rayleigh test compared to epoch folding. Astrophys. J. 272, 256–258 (1983).

    ADS  Google Scholar 

  44. Leahy, D. A. Searches for pulsed emission—improved determination of period and amplitude from epoch folding for sinusoidal signals. Astron. Astrophys. 180, 275–277 (1987).

    ADS  Google Scholar 

  45. Buccheri, R. et al. Search for pulsed γ-ray emission from radio pulsars in the COS-B data. Astron. Astrophys. 128, 245–251 (1983).

    ADS  Google Scholar 

  46. Foight, D. R., Güver, T., Özel, F. & Slane, P. O. Probing X-ray absorption and optical extinction in the interstellar medium using Chandra observations of supernova remnants. Astrophys. J. 826, 66 (2016).

    ADS  Google Scholar 

  47. Di Salvo, T. et al. NuSTAR and XMM-Newton broad-band spectrum of SAX J1808.4-3658 during its latest outburst in 2015. Mon. Not. R. Astron. Soc. 483, 767–779 (2019).

    ADS  Google Scholar 

  48. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    ADS  Google Scholar 

  49. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Google Scholar 

  50. Elebert, P. et al. Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst. Mon. Not. R. Astron. Soc. 395, 884–894 (2009).

    ADS  Google Scholar 

  51. Tudor, V. et al. Disc-jet coupling in low-luminosity accreting neutron stars. Mon. Not. R. Astron. Soc. 470, 324–339 (2017).

    ADS  Google Scholar 

  52. Russell, D. M. et al. Optical precursors to X-ray binary outbursts. Astron. Nach. 340, 278–283 (2019).

    ADS  Google Scholar 

  53. Pirbhoy, S. F. et al. XB-NEWS detection of a new outburst of MAXI J1348−630. The Astronomer’s Telegram 13451 (2020).

  54. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS  Google Scholar 

  55. Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  Google Scholar 

  56. Arnaud, K. A. in Astronomical Data Analysis Software and Systems (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).

  57. Życki, P. T., Done, C. & Smith, D. A. The 1989 May outburst of the soft X-ray transient GS 2023+338 (V404 Cyg). Mon. Not. R. Astron. Soc. 309, 561–575 (1999).

    ADS  Google Scholar 

  58. Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487 (1996).

    ADS  Google Scholar 

  59. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    ADS  Google Scholar 

  60. Papitto, A. et al. XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4−3658. Astron. Astrophys. 493, L39–L43 (2009).

    ADS  Google Scholar 

  61. Sanna, A. et al. NuSTAR observation of the latest outburst of SAX J1808.4−3658. The Astronomer’s Telegram 13022 (2019).

  62. in ’t Zand, J. J. M. et al. Discovery of the X-ray transient SAX J1808.4−3658, a likely low-mass X-ray binary. Astron. Astrophys. Lett. 331, L25–L28 (1998).

  63. Vrtilek, S. D. et al. Observations of Cygnus X-2 with IUE: ultraviolet results from a multiwavelength campaign. Astron. Astrophys. 235, 162 (1990).

    ADS  Google Scholar 

  64. van Paradijs, J. & McClintock, J. E. in X-ray Binaries (eds Lewin, W. H. G. et al.) 58–125 (Cambridge Univ. Press, 1995).

  65. Russell, D. M. et al. Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions. Mon. Not. R. Astron. Soc. 371, 1334–1350 (2006).

    ADS  Google Scholar 

  66. Di Salvo, T. & Burderi, L. Constraints on the neutron star magnetic field of the two X-ray transients SAX J1808.4−3658 and Aql X−1. Astron. Astrophys. 397, 723–727 (2003).

    ADS  Google Scholar 

  67. Sanna, A. et al. On the timing properties of SAX J1808.4−3658 during its 2015 outburst. Mon. Not. R. Astron. Soc. 471, 463–477 (2017).

    ADS  Google Scholar 

  68. Frank, J., King, A. & Raine, D. J. (eds) Accretion Power in Astrophysics (Cambridge Univ. Press, 2002).

  69. Poutanen, J. & Gierliński, M. On the nature of the X-ray emission from the accreting millisecond pulsar SAX J1808.4−3658. Mon. Not. R. Astron. Soc. 343, 1301–1311 (2003).

    ADS  Google Scholar 

  70. Romani, R. W. Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys. J. 470, 469 (1996).

    ADS  Google Scholar 

  71. Torres, D. F., Viganò, D., Coti Zelati, F. & Li, J. Synchrocurvature modelling of the multifrequency non-thermal emission of pulsars. Mon. Not. R. Astron. Soc. 489, 5494–5512 (2019).

    ADS  Google Scholar 

  72. Mignani, R. P. et al. The first ultraviolet detection of the Large Magellanic Cloud pulsar PSR B0540−69 and its multi-wavelength properties. Astrophys. J. 871, 246 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

A.M.Z. thanks the HST contact scientist, D. Welty (STScI), for constant support in the observation planning and T. Royle (STScI) for checking the scheduling processes. A.M.Z. thanks A. Riley (STIS Team) for the support in the scientific data analysis. A.M.Z. acknowledges the support of the PHAROS COST Action (CA16214) and A. Ridolfi for his help in data analysis. A.M.Z. would also like to thank G. Benevento for comments on draft. F.C.Z. is supported by a Juan de la Cierva fellowship. S.C. and P.D.A. acknowledge support from ASI grant I/004/11/3. D.d.M., A.P. and L.S. acknowledge financial support from the Italian Space Agency (ASI) and National Institute for Astrophysics (INAF) under agreements ASI-INAF I/037/12/0. L.B., D.d.M., T.D.S., A.P. and L.S. acknowledge financial contributions from ASI-INAF agreement no. 2017-14-H.0, INAF main-stream (principal investigator: T. Belloni; principal investigator: A. De Rosa). D.F.T. acknowledges support from grants PGC2018-095512-B-I00, SGR2017-1383 and AYA2017-92402-EXP. L.B and T.D.S. thank A. Marino for useful discussions and acknowledge financial contributions from the HERMES project financed by the Italian Space Agency (ASI) agreement no. 2016/13 U.O. T.D.S. and L.S. acknowledge the iPeska research grant (principal investigator: A. Possenti) funded under the INAF national call Prin-SKA/CTA approved with the Presidential Decree 70/2016. A.P., F.C.Z., and D.T. acknowledge the International Space Science Institute (ISSI-Beijing), which funded and hosted the international team ‘Understanding and Unifying the Gamma-rays Emitting Scenarios in High Mass and Low Mass X-ray Binaries’. Results obtained with SiFAP2 and presented in this paper are based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). Part of this paper is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. This work also made use of data and software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC).

Author information

Authors and Affiliations

Authors

Contributions

F.A., A.M.Z., A.P. and F.C.Z. analysed optical, UV and X-ray data. F.A., A.M.Z., A.P., F.C.Z. and L.S. wrote the paper. A.M.Z., A.P., S.C., P.D.A., F.C.Z., P.C., L.S., T.D.S., L.B., D.d.M., D.F.T., G.L.I. and A.S. interpreted the results. F.A., F.M., P. Cretaro, A.G., F. Leone. and E.P. conceived SiFAP2. A.G., A.P. and F.A. performed the optical observation. A.G., M. Cecconi, M.D.G.G., A.L.R.R., H.P.V., M.H.D. and J.J.S.J. developed the SiFAP2 mechanical interface and its relative control software. M. Cadelano and R.P.M. contributed to the HST data analysis. M.C.B., D.M.R., D.M.B. and F. Lewis. contributed to the optical part of the SED. All authors read, commented on and approved the submission of this article.

Corresponding authors

Correspondence to F. Ambrosino or A. Miraval Zanon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks Lucien Kuiper and Jumpei Takata for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–2.

Source data

Source Data Fig. 1

NICER X-ray light curve of SAX J1808.4-3658 data.

Source Data Fig. 2

Fast Fourier transform of both optical and UV datasets. Optical and UV pulse profiles’ data (inset of Fig. 2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ambrosino, F., Miraval Zanon, A., Papitto, A. et al. Optical and ultraviolet pulsed emission from an accreting millisecond pulsar. Nat Astron 5, 552–559 (2021). https://doi.org/10.1038/s41550-021-01308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01308-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing