Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A concordance scenario for the observed neutrino from a tidal disruption event

A Publisher Correction to this article was published on 12 March 2021

This article has been updated

Abstract

During a tidal disruption event, a star is torn apart by the tidal forces of a supermassive black hole, with about 50% of the star’s mass eventually accreted by the black hole. The resulting flare can, in extreme cases of super-Eddington mass accretion, result in a relativistic jet1,2,3,4. While tidal disruption events have been theoretically proposed as sources of high-energy cosmic rays5,6 and neutrinos7,8,9,10,11,12,13,14, stacking searches indicate that their contribution to the diffuse extragalactic neutrino flux is very low15. However, a recent association of a track-like astrophysical neutrino (IceCube-191001A16) with a tidal disruption event (AT2019dsg17) indicates that some tidal disruption events can accelerate cosmic rays to petaelectronvolt energies. Here we introduce a phenomenological concordance scenario with a relativistic jet to explain this association: an expanding cocoon progressively obscures the X-rays emitted by the accretion disk, while at the same time providing a sufficiently intense external target of backscattered X-rays for the production of neutrinos via proton–photon interactions. We also reproduce the delay (relative to the peak) of the neutrino emission by scaling the production radius with the black-body radius. Our energetics and assumptions for the jet and the cocoon are compatible with expectations from numerical simulations of tidal disruption events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time evolution of different luminosities in the jetted TDE model.
Fig. 2: Illustration of the evolution of the TDE outflow in the concordance scenario.
Fig. 3: Predicted neutrino fluence for the jetted TDE model.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available in the supplementary information or from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Hills, J. G. Possible power source of Seyfert galaxies and QSOs. Nature 254, 295–298 (1975).

    Article  ADS  Google Scholar 

  2. Rees, M. J. Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  3. Lacy, J. H., Townes, C. H. & Hollenbach, D. J. The nature of the central parsec of the Galaxy. Astrophys. J. 262, 120–134 (1982).

    Article  ADS  Google Scholar 

  4. Phinney, E. S. in The Center of the Galaxy (ed. Morris, M.) 543–553 (Springer, 1989).

  5. Farrar, G. R. & Gruzinov, A. Giant AGN flares and cosmic ray bursts. Astrophys. J. 693, 329–332 (2009).

    Article  ADS  Google Scholar 

  6. Farrar, G. R. & Piran, T. Tidal disruption jets as the source of ultra-high energy cosmic rays. Preprint at https://arxiv.org/abs/1411.0704 (2014).

  7. Wang, X.-Y., Liu, R.-Y., Dai, Z.-G. & Cheng, K. Probing the tidal disruption flares of massive black holes with high-energy neutrinos. Phys. Rev. D 84, 081301 (2011).

    Article  ADS  Google Scholar 

  8. Wang, X.-Y. & Liu, R.-Y. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV–PeV neutrinos. Phys. Rev. D 93, 083005 (2016).

    Article  ADS  Google Scholar 

  9. Dai, L. & Fang, K. Can tidal disruption events produce the IceCube neutrinos? Mon. Not. R. Astron. Soc. 469, 1354–1359 (2017).

    Article  ADS  Google Scholar 

  10. Senno, N., Murase, K. & Meszaros, P. High-energy neutrino flares from X-ray bright and dark tidal disruption events. Astrophys. J. 838, 3 (2017).

    Article  ADS  Google Scholar 

  11. Lunardini, C. & Winter, W. High energy neutrinos from the tidal disruption of stars. Phys. Rev. D 95, 123001 (2017).

    Article  ADS  Google Scholar 

  12. Guépin, C., Kotera, K., Barausse, E., Fang, K. & Murase, K. Ultra-high energy cosmic rays and neutrinos from tidal disruptions by massive black holes. Astron. Astrophys. 616, A179 (2018).

    Article  ADS  Google Scholar 

  13. Biehl, D., Boncioli, D., Lunardini, C. & Winter, W. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Sci. Rep. 8, 10828 (2018).

    Article  ADS  Google Scholar 

  14. Hayasaki, K. & Yamazaki, R. Neutrino emissions from tidal disruption remnants. Astrophys. J. 886, 114 (2019).

    Article  ADS  Google Scholar 

  15. The IceCube Collaboration. Search for neutrinos from populations of optical transients. In Proc. 36th International Cosmic Ray Conference (ICRC2019) 1016 (PoS, 2019).

  16. Aartsen, M. et al. IceCube-191001A—IceCube observation of a high-energy neutrino candidate event. GRB Coord. Netw. 25913 (2019).

  17. Stein, R. et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. https://doi.org/10.1038/s41550-020-01295-8 (2021).

  18. van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Preprint at https://arxiv.org/abs/2001.01409 (2020).

  19. Perez-Torres, M. et al. Unambiguous radio detection of the tidal disruption event AT2019dsg with e-MERLIN. The Astronomer’s Telegram 12960 (2019).

  20. Sfaradi, I. et al. A possible radio detection of the TDE candidate AT2019DSG by AMI-LA. The Astronomer’s Telegram 12798 (2019).

  21. Pasham, D., Remillard, R. & Wevers, T. Swift discovers X-rays from the newly discovered tidal disruption flare candidate AT2019dsg. The Astronomer’s Telegram 12777 (2019).

  22. Pasham, D. et al. NICER X-ray observations of the young tidal disruption flare candidate AT2019dsg. The Astronomer’s Telegram 12825 (2019).

  23. Lee, C.-H. et al. Optical polarimetry of the tidal disruption event AT2019dsg. Astrophys J. 892, L1 (2020).

    Article  ADS  Google Scholar 

  24. Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. A unified model for tidal disruption events. Astrophys. J. Lett. 859, L20 (2018).

    Article  ADS  Google Scholar 

  25. Hummer, S., Ruger, M., Spanier, F. & Winter, W. Simplified models for photohadronic interactions in cosmic accelerators. Astrophys. J. 721, 630–652 (2010).

    Article  ADS  Google Scholar 

  26. Strotjohann, N. L., Kowalski, M. & Franckowiak, A. Eddington bias for cosmic neutrino sources. Astron. Astrophys. 622, L9 (2019).

    Article  ADS  Google Scholar 

  27. Generozov, A. et al. The influence of circumnuclear environment on the radio emission from TDE jets. Mon. Not. R. Astron. Soc. 464, 2481–2498 (2017).

    Article  ADS  Google Scholar 

  28. Alexander, K. D., van Velzen, S., Horesh, A. & Zauderer, B. A. Radio properties of tidal disruption events. Space Sci. Rev. 216, 81 (2020).

    Article  ADS  Google Scholar 

  29. Fang, K., Metzger, B. D., Vurm, I., Aydi, E. & Chomiuk, L. High-energy neutrinos and gamma rays from nonrelativistic shock-powered transients. Astrophys. J. 904, 4 (2020).

    Article  ADS  Google Scholar 

  30. Murase, K., Kimura, S. S., Zhang, B. T., Oikonomou, F. & Petropoulou, M. High-energy neutrino and gamma-ray emission from tidal disruption events. Astrophys. J. 902, 108 (2020).

    Article  ADS  Google Scholar 

  31. Kochanek, C. Tidal disruption event demographics. Mon. Not. R. Astron. Soc. 461, 371–384 (2016).

    Article  ADS  Google Scholar 

  32. Blandford, R. & Znajek, R. Electromagnetic extractions of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article  ADS  Google Scholar 

  33. De Colle, F., Guillochon, J., Naiman, J. & Ramirez-Ruiz, E. The dynamics, appearance and demographics of relativistic jets triggered by tidal disruption of stars in quiescent supermassive black holes. Astrophys. J. 760, 103 (2012).

    Article  ADS  Google Scholar 

  34. Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013).

    Article  ADS  Google Scholar 

  35. McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013).

    Article  ADS  Google Scholar 

  36. Wevers, T. et al. Black hole masses of tidal disruption event host galaxies II. Mon. Not. R. Astron. Soc. 487, 4136–4152 (2019).

    Article  ADS  Google Scholar 

  37. Ryu, T., Krolik, J. & Piran, T. Measuring stellar and black hole masses of tidal disruption events. Astrophys. J. 904, 73 (2020).

    Article  ADS  Google Scholar 

  38. Chai, B., Cao, X. & Gu, M. What governs the bulk velocity of the jet components in active galactic nuclei? Astrophys. J. 759, 114 (2012).

    Article  ADS  Google Scholar 

  39. Burrows, D. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).

    Article  ADS  Google Scholar 

  40. Bustamante, M., Murase, K., Winter, W. & Heinze, J. Multi-messenger light curves from gamma-ray bursts in the internal shock model. Astrophys. J. 837, 33 (2017).

    Article  ADS  Google Scholar 

  41. Murase, K., Inoue, Y. & Dermer, C. D. Diffuse neutrino intensity from the inner jets of active galactic nuclei: impacts of external photon fields and the blazar sequence. Phys. Rev. D 90, 023007 (2014).

    Article  ADS  Google Scholar 

  42. Roth, N., Kasen, D., Guillochon, J. & Ramirez-Ruiz, E. The X-ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827, 3 (2016).

    Article  ADS  Google Scholar 

  43. Wen, S., Jonker, P. G., Stone, N. C., Zabludoff, A. I. & Psaltis, D. Continuum-fitting the X-ray spectra of tidal disruption events. Astrophys. J. 897, 80 (2020).

    Article  ADS  Google Scholar 

  44. Pe’er, A. Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 907321 (2015).

    Article  ADS  Google Scholar 

  45. Sari, R. & Piran, T. Variability in GRBs: a clue. Astrophys. J. 485, 270 (1997).

    Article  ADS  Google Scholar 

  46. Kino, M., Mizuta, A. & Yamada, S. Hydrodynamical effects in internal shock of relativistic outflows. Astrophys. J. 611, 1021–1032 (2004).

    Article  ADS  Google Scholar 

  47. Rudolph, A., Heinze, J., Fedynitch, A. & Winter, W. Impact of the collision model on the multi-messenger emission from gamma-ray burst internal shocks. Astrophys. J. 893, 72 (2020).

    Article  ADS  Google Scholar 

  48. Gao, S., Fedynitch, A., Winter, W. & Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 3, 88–92 (2019).

    Article  ADS  Google Scholar 

  49. Keivani, A. et al. A multimessenger picture of the flaring blazar TXS 0506+056: implications for high-energy neutrino emission and cosmic ray acceleration. Astrophys. J. 864, 84 (2018).

    Article  ADS  Google Scholar 

  50. Rodrigues, X., Gao, S., Fedynitch, A., Palladino, A. & Winter, W. Leptohadronic blazar models applied to the 2014–2015 flare of TXS 0506+056. Astrophys. J. Lett. 874, L29 (2019).

    Article  ADS  Google Scholar 

  51. Esteban, I., Gonzalez-Garcia, M., Hernandez-Cabezudo, A., Maltoni, M. & Schwetz, T. Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering. J. High Energy Phys. 2019, 106 (2019).

    Article  Google Scholar 

  52. Blaufuss, E., Kintscher, T., Lu, L. & Tung, C. F. The next generation of IceCube real-time neutrino alerts. In Proc. 36th International Cosmic Ray Conference (ICRC2019) 1021 (PoS, 2020).

  53. Aartsen, M. et al. Searches for extended and point-like neutrino sources with four years of IceCube data. Astrophys. J. 796, 109 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Franckowiak, M. Kowalski, R. Stein, A. Taylor and S. van Velzen for useful discussions. This work has been supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant number 646623), and by the US National Science Foundation grant number PHY-1613708.

Author information

Authors and Affiliations

Authors

Contributions

The theoretical ideas were equally developed by C.L. and W.W. Numerical simulations were performed by W.W. The artwork was produced by C.L. and the results figures by W.W. Both authors contributed equally to the manuscript writing.

Corresponding author

Correspondence to Walter Winter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks Francis Halzen, Kikitake Hayasaki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 1

Source data (ascii) for curves (description in beginning of file).

Source Data Fig. 3

Source data (ascii) for curves (description in beginning of file).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, W., Lunardini, C. A concordance scenario for the observed neutrino from a tidal disruption event. Nat Astron 5, 472–477 (2021). https://doi.org/10.1038/s41550-021-01305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01305-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing