Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The future of astronomy with small satellites

The number of small satellites has grown hugely in the past decade, from tens of satellites per year in the mid-2010s to a projection of tens of thousands in orbit by the mid-2020s. This presents both problems and opportunities for observational astronomy. Small satellites offer complementary cost-effective capabilities to both ground-based astronomy and larger space missions. Compared with ground-based astronomy, these advantages are not just in the accessibility of wavelength ranges where the Earth’s atmosphere is opaque, but also in stable, high-precision photometry, long-term monitoring and improved areal coverage. Astronomy has a long history of new observational parameter spaces leading to major discoveries. Here we discuss the potential for small satellites to explore new parameter spaces in astrophysics, drawing on examples from current and proposed missions, and spanning a wide range of science goals from binary stars, exoplanets and Solar System science to the early Universe and fundamental physics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Atmospheric opacity.
Fig. 2: Exoplanet transit observations by the ASTERIA mission.

References

  1. 1.

    Jones, H. W. The recent large reduction in space launch cost. In 48th Int. Conf. Environmental Systems, ICES-2018-81 (Texas Tech Univ., 2018)

  2. 2.

    Massey, R., Lucatello, S. & Benvenuti, P. The challenge of satellite megaconstellations. Nat. Astron. https://doi.org/10.1038/s41550-020-01224-9 (2020).

  3. 3.

    Venkatesan, A., Lowenthal, J., Prem, P. & Vidaurri, M. The impact of satellite constellations on space as an ancestral global commons. Nat. Astron. https://doi.org/10.1038/s41550-020-01238-3 (2020).

  4. 4.

    Tyson, J. A. et al. Mitigation of LEO satellite brightness and trail effects on the Rubin Observatory LSST. Preprint at https://arxiv.org/abs/2006.12417 (2020).

  5. 5.

    Borncamp, F. & Lian Lim, P. Satellite detection in ACS/HST images. In Astronomical Data Analysis Software and Systems XXVI, 491–494 (Conference series no. 521, Astronomical Society of the Pacific, 2019).

  6. 6.

    Cutri, R. M. et al. Explanatory Supplement to the WISE All-Sky Data Release Products (IPAC, 2015); http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/

  7. 7.

    Megeath, S. T. et al. The legacy of the great observatories: panchromatic coverage as a strategic goal for NASA astrophysics. Bull. Am. Astron. Soc. 51, 184 (2019).

    Google Scholar 

  8. 8.

    Pasian, F. et al. ASTERICS: addressing cross-cutting synergies and common challenges for the next decade astronomy facilities. In Astronomical Data Analysis Software and Systems XXV, 57–60 (Conference series no. 512, Astronomical Society of the Pacific, 2016).

  9. 9.

    Pardo, J. R., Cernicharo, J. & Serabyn, E. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).

    ADS  Google Scholar 

  10. 10.

    Lord, S. D. A New Software Tool for Computing Earth’s Atmospheric Transmission of Near- and Far-Infrared Radiation. NASA Technical Memorandum 103957 (1992).

  11. 11.

    Israel, M. et al. NASA Stratospheric Balloons: Science at the Edge of Space. NASA Technical Report NP-2006-3-754-GSFC (NASA, 2010).

  12. 12.

    Seibert, G. The History of Sounding Rockets and their Contribution to European Space Research. ESA History Study Reports no. 38 (ESA, 2006).

  13. 13.

    Davies, R. & Kasper, M. Adaptive optics for astronomy. Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).

    ADS  Google Scholar 

  14. 14.

    Law, N. M., Mackay, C. D. & Baldwin, J. E. Lucky imaging: high angular resolution imaging in the visible from the ground. Astron. Astrophys. 446, 739–745 (2006).

    ADS  Google Scholar 

  15. 15.

    de Gasperin, F. et al. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. Astron. Astrophys. 615, A179 (2018).

    Google Scholar 

  16. 16.

    Sokolowski, M. et al. The impact of the ionosphere on ground-based detection of the global epoch of reionization signal. Astrophys. J. 813, 18 (2015).

    ADS  Google Scholar 

  17. 17.

    Koopmans, L. V. E. et al. The cosmic dawn and epoch of reionization with the Square Kilometre Array. Proc. Sci. 9-13-June-2014 (2014).

  18. 18.

    Thompson, A. R., Moran, J. M. & Swenson, G. W. in Interferometry and Synthesis in Radio Astronomy, 787–808 (Springer, 2017).

  19. 19.

    Dicke, R. H., Peebles, P. J. E., Roll, P. G. & Wilkinson, D. T. Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965).

    ADS  Google Scholar 

  20. 20.

    Wilson, R. W. & Penzias, A. A. Isotropy of cosmic background radiation at 4080 megahertz. Science 156, 1100–1101 (1965).

    ADS  Google Scholar 

  21. 21.

    Serjeant, S. Observational Cosmology (Cambridge Univ. Press, 2010).

  22. 22.

    Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS  Google Scholar 

  23. 23.

    Laureijs, R. et al. Euclid Definition Study Report. ESA Technical Report ESA/SRE(2011)12 (2011).

  24. 24.

    Spergel, D. et al. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets. WFIRST-AFTA Final Report. Preprint at https://arxiv.org/abs/1305.5422 (2013).

  25. 25.

    Wyithe, J. S. B. et al. A distortion of very-high-redshift galaxy number counts by gravitational lensing. Nature 469, 181–184 (2011).

    ADS  Google Scholar 

  26. 26.

    Marchetti, L., Serjeant, S. & Vaccari, M. Finding bright z ≥ 6 Ly α emitters with lensing: prospects for Euclid. Mon. Not. R. Astron. Soc. 470, 5007–5013 (2017).

    ADS  Google Scholar 

  27. 27.

    van Haarlem, M. P. et al. LOFAR: the Low-Frequency Array. Astron. Astrophys. 556, A2 (2013).

    Google Scholar 

  28. 28.

    Wise, J. H. Cosmic reionisation. Contemp. Phys. 60, 145–163 (2019).

    ADS  Google Scholar 

  29. 29.

    Chung, S. J., Bandyopadhyay, S., Foust, R., Subramanian, G. P. & Hadaegh, F. Y. Review of formation flying and constellation missions using nanosatellites. J. Spacecraft Rockets 53, 567–578 (2016).

    ADS  Google Scholar 

  30. 30.

    Wu, S. et al. SULFRO: a swarm of nano-/micro-satellite at SE L2 for Space Ultra-Low Frequency Radio Observatory. In Proc. 28th Annual AIAA/USU Conference on Small Satellites SSC14-III-9 (Utah State Univ. Libraries, 2014).

  31. 31.

    Burns, J. O. Transformative science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies. Preprint at https://arxiv.org/abs/2003.06881 (2020).

  32. 32.

    Bentum, M. J. et al. A roadmap towards a space-based radio telescope for ultra-low frequency radio astronomy. Adv. Space Res. 65, 856–867 (2020).

    ADS  Google Scholar 

  33. 33.

    Saks, N. et al. DARIS, a fleet of passive formation flying small satellites for low frequency radio astronomy. In Small Satellite Systems and Services — The 4S Symposium (ESA, CNES, 2010); https://go.nature.com/3igyOtK

  34. 34.

    Bergman, J. E. S. et al. First Explorer — an innovative low-cost passive formation-flying system. In Proc. CEAS 2009 European Air Space Conference 1–14 (Royal Aeronautical Society, 2009).

  35. 35.

    Blott, R. et al. Space-based ultra-long wavelength radio observatory (low cost) –SURO-LC. In EPSC Abstracts Vol. 8, EPSC2013-279 (EPSC, 2013); https://go.nature.com/2ZpgreC

  36. 36.

    Boonstra, A.-J. et al. Discovering the sky at the longest wavelengths (DSL). In Proc. IEEE Aerospace Conf., IEEE 16121612 (IEEE, 2016).

  37. 37.

    Cecconi, B. et al. NOIRE study report: towards a low frequency radio interferometer in space. In Proc. IEEE Aerospace Conf., IEEE 17878057 (IEEE, 2018).

  38. 38.

    Lind, F. D. et al. AERO & VISTA: demonstrating HF radio interferometry with vector sensors. In Proc. 33rd Annual AIAA/USU Conference on Small Satellites SSC19-WKV-09 (Utah State Univ. Libraries, 2019).

  39. 39.

    Neugebauer, G. et al. The Infrared Astronomical Satellite (IRAS) mission. Astrophys. J. 278, L1–L6 (1984).

    ADS  Google Scholar 

  40. 40.

    Kessler, M. F. et al. The Infrared Space Observatory (ISO) mission. Astron. Astrophys. 315, L27–L31 (1996).

    ADS  Google Scholar 

  41. 41.

    Shibai, H. AKARI (ASTRO-F): flight performance and preliminary results. Adv. Space Res. 40, 595–599 (2007).

    ADS  Google Scholar 

  42. 42.

    Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. Suppl. 154, 1–9 (2004).

    ADS  Google Scholar 

  43. 43.

    Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS  Google Scholar 

  44. 44.

    Pilbratt, G. L. et al. Herschel Space Observatory — an ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010).

    ADS  Google Scholar 

  45. 45.

    Korngut, P. M. et al. SPHEREx: an all-sky NIR spectral survey. Proc. SPIE 10698, 106981U (2018).

    Google Scholar 

  46. 46.

    Roelfsema, P. R. et al. SPICA — a large cryogenic infrared space telescope: unveiling the obscured Universe. Publ. Astron. Soc. Austr. 35, e030 (2018).

    ADS  Google Scholar 

  47. 47.

    Yun, W. ISCEA: infrared smallsat for cluster evolution astrophysics. Bull. Am. Astron. Soc. 51, 4 (2019).

    Google Scholar 

  48. 48.

    Kelsall, T. et al. The COBE Diffuse Infrared Background Experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. Astrophys. J. 508, 44–73 (1998).

    ADS  Google Scholar 

  49. 49.

    Jones, M. H., Bewsher, D. & Brown, D. S. Imaging of a circumsolar dust ring near the orbit of Venus. Science 342, 960–963 (2013).

    ADS  Google Scholar 

  50. 50.

    Shirahata, M. et al. The Cosmic Infrared Background Experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light. Proc. SPIE 9904, 99044J (2016).

    Google Scholar 

  51. 51.

    Fuschino, F. et al. HERMES: An ultra-wide band X and gamma-ray transient monitor on board a nano-satellite constellation. Nucl. Instrum. Methods Phys. Res. A 936, 199–203 (2019).

    ADS  Google Scholar 

  52. 52.

    Burderi, L. et al. GrailQuest: Hunting for Atoms of Space and Time Hidden in the Wrinkle of Space-Time. ESA Voyage 2050 White Paper. Preprint at https://arxiv.org/abs/1911.02154 (2019).

  53. 53.

    Grindlay, J. Space time-domain astrophysics in the 2020’s. In Proc. The Space Astrophysics Landscape for the 2020s and Beyond LPI contribution no. 2135 (Lunar and Planetary Institute, 2019).

  54. 54.

    Cieślak, M. J., Gamage, K. A. A. & Glover, R. Coded-aperture imaging systems: past, present and future development — a review. Radiat. Meas. 92, 59–71 (2016).

    Google Scholar 

  55. 55.

    Hong, J. et al. Miniature Lightweight X-ray Optics (MiXO) and CubeSat X-ray Telescope (CubeX) for Solar System exploration. In Proc. 48th Lunar and Planetary Science Conference LPI contribution no. 1964 (Lunar and Planetary Institute, 2017).

  56. 56.

    Poppenhaeger, K. et al. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773, 62 (2013).

    ADS  Google Scholar 

  57. 57.

    Sagiv, I. et al. Science with a wide-field UV transient explorer. Astron. J. 147, 79 (2014).

    ADS  Google Scholar 

  58. 58.

    Cenko, S. B. The Gravitational-wave Ultraviolet Counterpart Imager (GUCI) network. Am. Astron. Soc. Meeting Abstracts 234, 212.03 (2019).

    ADS  Google Scholar 

  59. 59.

    Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    ADS  Google Scholar 

  60. 60.

    Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).

    ADS  Google Scholar 

  61. 61.

    Walker, G., Matthews, J., Kuschnig, R. & Johnson, R. The MOST asteroseismology mission: ultraprecise photometry from space. Publ. Astron. Soc. Pacif. 115, 1023 (2003).

    ADS  Google Scholar 

  62. 62.

    Auvergne, M. et al. The CoRoT satellite in flight: description and performance. Astron. Astrophys. 506, 411–424 (2009).

    ADS  Google Scholar 

  63. 63.

    Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    ADS  Google Scholar 

  64. 64.

    Batalha, N. Exploring exoplanet populations with NASA’s Kepler mission. Proc. Natl Acad. Sci. USA 111, 12647–12654 (2014).

    ADS  Google Scholar 

  65. 65.

    Ricker, G. R. The Transiting Exoplanet Survey Satellite. Proc. SPIE 9904, i99042B (2016).

    Google Scholar 

  66. 66.

    Benz, W., Ehrenreich, D. & Isaak, K. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 1257–1281 (Springer, 2018).

  67. 67.

    Rauer, H. & Heras, A. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 1309–1330 (Springer, 2018).

  68. 68.

    Knapp, M. et al. Demonstrating high-precision photometry with a CubeSat: ASTERIA observations of 55 Cancri e. Astron. J. 160, 23 (2020).

    ADS  Google Scholar 

  69. 69.

    Tsiaras, A. et al. Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b. Nat. Astron. 3, 1086–1091 (2019).

    ADS  Google Scholar 

  70. 70.

    Demory, B. et al. A map of the large day–night temperature gradient of a super-Earth exoplanet. Nature 532, 207–209 (2016).

    ADS  Google Scholar 

  71. 71.

    Tinetti, G. et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).

    ADS  Google Scholar 

  72. 72.

    Cowan, N. et al. Characterizing transiting planet atmospheres through 2025. Publ. Astron. Soc. Pacif. 127, 311 (2015).

    ADS  Google Scholar 

  73. 73.

    Fleming, B. T. et al. The Colorado Ultraviolet Transit Experiment (CUTE): a dedicated CubeSat mission for the study of exoplanetary mass loss and magnetic fields. Proc. SPIE 10397, 103971A (2017).

    Google Scholar 

  74. 74.

    Edwards, B. et al. Exoplanet spectroscopy and photometry with the Twinkle space telescope. Exp. Astron. 47, 29–63 (2019).

    ADS  Google Scholar 

  75. 75.

    Burchell, M. Panspermia today. Int. J. Astrobiol. 3, 73–80 (2004).

    ADS  Google Scholar 

  76. 76.

    Jørgensen, J. K. et al. The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA. Astron. Astrophys. 595, A117 (2016).

    Google Scholar 

  77. 77.

    van Dishoeck, E. F. Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discuss. 168, 9–47 (2014).

    ADS  Google Scholar 

  78. 78.

    Auriacombe, O. B. J. E. et al. Terahertz desorption emission spectroscopy (THz DES) — ‘ALMA in the Lab’. In AAS Meeting 228 104.03 (American Astronomical Society, 2016).

  79. 79.

    de Vera, J.-P. et al. Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS. Astrobiology 19, 145–157 (2019).

    ADS  Google Scholar 

  80. 80.

    Cottin, H. et al. Space as a tool for astrobiology: review and recommendations for experimentations in Earth orbit and beyond. Space Sci. Rev. 209, 83–181 (2017).

    ADS  Google Scholar 

  81. 81.

    Friis-Christensen, E., Lühr, H. & Hulot, G. Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006).

    ADS  Google Scholar 

  82. 82.

    Abbasi, V. et al. The NEOSSat experience: 5 years in the life of Canada’s space surveillance telescope. In 1st NEO and Debris Detection Conf. (eds Flohrer, T. et al.) (ESA Space Safety Programme Office, 2019).

  83. 83.

    Moore, C. S. et al. The instruments and capabilities of the miniature X-ray solar spectrometer (MinXSS) CubeSats. Solar Phys. 293, 21 (2018).

    ADS  Google Scholar 

  84. 84.

    Shkolnik, E. L. On the verge of an astronomy CubeSat revolution. Nat. Astron. 2, 374–378 (2018).

    ADS  Google Scholar 

  85. 85.

    Agasid, E. et al. State of the Art of Small Spacecraft Technology. NASA Online Report, https://www.nasa.gov/smallsat-institute/sst-soa (accessed 28 July 2020).

  86. 86.

    Villalba Corbacho, V., Kuiper, H. & Gill, E. Review on thermal and mechanical challenges in the development of deployable space optics. J. Astron. Telesc. Instrum. Syst. 6, 010902 (2020).

    ADS  Google Scholar 

  87. 87.

    Komatsu, M. & Nakasuka, S. University of Tokyo Nano Satellite Project ‘PRISM’. Trans. JSASS Space Technol. Jpn 7, 19–24 (2008).

    Google Scholar 

  88. 88.

    Ely, T. A. et al. Using the Deep Space Atomic Clock for navigation and science. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 950–961 (2018).

    Google Scholar 

  89. 89.

    Ayris, P. et al. Realising the European Open Science Cloud (Public Office of the European Union, 2016).

  90. 90.

    Norris, R. P. Discovering the unexpected in astronomical survey data. Publ. Astron. Soc. Austr. 34, e007 (2016).

    ADS  Google Scholar 

  91. 91.

    Bèland, S., Boulade, O. & Davidge, T. The extinction curve at Mauna Kea in the visible range. Canada–France–Hawaii Telescope Inf. Bull. 19, 16 (1988).

    ADS  Google Scholar 

  92. 92.

    Bodhaine, B. A. et al. New ultraviolet spectroradiometer measurements at Mauna Loa Observatory. Geophys. Res. Lett. 23, 2121–2124 (1996).

    ADS  Google Scholar 

  93. 93.

    Meier, R. R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 58, 1–185 (1991).

    ADS  Google Scholar 

  94. 94.

    Traub, W. A. & Stier, M. T. Theoretical atmospheric transmission in the mid- and far-infrared at four altitudes. Appl. Opt. 15, 364–377 (1976).

    ADS  Google Scholar 

  95. 95.

    Zatsepin, G. T. & Chudakov, A. E. Method of finding local sources of high-energy photons. Sov. Phys. J. Exp. Theor. Phys. 14, 469–470 (1962).

    Google Scholar 

  96. 96.

    Hinton, J. Ground-based gamma-ray astronomy with Cherenkov telescopes. New J. Phys. 11, 055005 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the participants of the Springer Nature symposium ‘Future of astronomy with small satellites’ organized in London, November 2019, for contributions and for inspiring some of this Perspective. S.S. also thanks K. Olsson-Francis and H. Dickinson for discussions, the UK Space Agency for support under grant ST/T003502/1, and the ESCAPE project. ESCAPE — The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 824064.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen Serjeant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serjeant, S., Elvis, M. & Tinetti, G. The future of astronomy with small satellites. Nat Astron 4, 1031–1038 (2020). https://doi.org/10.1038/s41550-020-1201-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing