Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Pacific Ocean Neutrino Experiment

An Author Correction to this article was published on 17 September 2020

This article has been updated

The Pacific Ocean Neutrino Experiment is a new initiative towards constructing a multi-cubic-kilometre neutrino telescope to expand our observable window of the Universe to the highest energies, and will be installed within the deep Pacific Ocean underwater infrastructure of Ocean Networks Canada.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison between measured and expected diffuse flux of high-energy neutrinos.
Fig. 2: P-ONE and its estimated performances.

Change history

  • 17 September 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Aartsen, M. G. et al. Phys. Rev. Lett. 111, 021103 (2013).

    Article  ADS  Google Scholar 

  2. IceCube Collaboration Science 342, 1242856 (2013).

  3. IceCube Collaboration Science 361, 147–151 (2018).

  4. Ahlers, M. & Halzen, F. Rep. Prog. Phys. 78, 126901 (2015).

    Article  ADS  Google Scholar 

  5. Ibarra, A., Kavanagh, B. J. & Rappelt, A. J. Cosmol. Astropart. Phys. 12, 018 (2018).

    Article  ADS  Google Scholar 

  6. Biteau, J. et al. Nat. Astron. 4, 124–131 (2020).

    Article  ADS  Google Scholar 

  7. Coloma, P., Hernández, P., Muñoz, V. & Shoemaker, I. M. Eur. Phys. J. C. 80, 235 (2020).

    Article  ADS  Google Scholar 

  8. Aartsen, M. G. et al. J. Instrum. 12, P03012 (2017).

    Article  Google Scholar 

  9. Aartsen, M. G. et al. Phys. Rev. Lett. 113, 101101 (2014).

    Article  ADS  Google Scholar 

  10. Aartsen, M. G. et al. Preprint at https://arxiv.org/abs/1710.01191 (2017).

  11. Aartsen, M. G. et al. Astrophys. J. 833, 3 (2016).

    Article  ADS  Google Scholar 

  12. Padovani, P. et al. Astron. Astrophys. Rev. 25, 2 (2017).

    Article  ADS  Google Scholar 

  13. Lamastra, A. et al. Astron. Astrophys. 607, A18 (2017).

    Article  Google Scholar 

  14. Padovani, P., Turcati, A. & Resconi, E. Mon. Not. R. Astron. Soc. 477, 3469–3479 (2018).

    Article  ADS  Google Scholar 

  15. IceCube Collaboration et al. Science 361, eaat1378 (2018).

  16. Padovani, P. et al. Mon. Not. R. Astron. Soc. 480, 192–203 (2018).

    Article  ADS  Google Scholar 

  17. Paiano, S., Falomo, R., Treves, A. & Scarpa, R. Astrophys. J. Lett. 854, L32 (2018).

    Article  ADS  Google Scholar 

  18. Aartsen, M. G. et al. Phys. Rev. Lett. 124, 051103 (2020).

    Article  ADS  Google Scholar 

  19. Ajello, M. et al. Astrophys. J. Suppl. 232, 18 (2017).

    Article  ADS  Google Scholar 

  20. Huber, M. Preprint at https://arxiv.org/abs/1908.08458 (2019).

  21. Mannheim, K. Astropart. Phys. 3, 295–302 (1995).

    Article  ADS  Google Scholar 

  22. Halzen, F. & Zas, E. Astrophys. J. 488, 669–674 (1997).

    Article  ADS  Google Scholar 

  23. Padovani, P., Petropoulou, M., Giommi, P. & Resconi, E. Mon. Not. R. Astron. Soc. 452, 1877–1887 (2015).

    Article  ADS  Google Scholar 

  24. Padovani, P., Resconi, E., Giommi, P., Arsioli, B. & Chang, Y. L. Mon. Not. R. Astron. Soc. 457, 3582–3592 (2016).

    Article  ADS  Google Scholar 

  25. Resconi, E., Coenders, S., Padovani, P., Giommi, P. & Caccianiga, L. Mon. Not. R. Astron. Soc. 468, 597–606 (2017).

    Article  ADS  Google Scholar 

  26. Aguilar, J. A. et al. Astropart. Phys. 26, 314–324 (2006).

    Article  ADS  Google Scholar 

  27. Baikal-GVD Collaboration Preprint at https://arxiv.org/abs/1908.05427 (2019).

  28. DUMAND Collaboration Phys. Rev. D. 42, 3613 (1990).

  29. IceCube Collaboration Preprint at https://arxiv.org/abs/2001.09520 (2020).

  30. Barnes, C. R., F. R. J., Best, M. M. R., Johnson, F. R. & Pirenne, B. CMOS Bull. SCMO 38, 89–96 (2010).

    Google Scholar 

  31. Boehmer, M. et al. J. Instrum. 14, P02013 (2019).

    Article  Google Scholar 

  32. Giommi, P. et al. Mon. Not. R. Astron. Soc. (in the press); preprint at https://arxiv.org/abs/2001.09355.

  33. IceCube Collaboration Nature 551, 596–600 (2017).

  34. Bustamante, M. & Connolly, A. Phys. Rev. Lett. 122, 041101 (2019).

    Article  ADS  Google Scholar 

  35. Resconi, E. PLEνM – Towards a Planetary Neutrino Monitoring System (Zenodo, 2019); https://doi.org/10.5281/zenodo.3520454.

  36. Schönert, S., Gaisser, T. K., Resconi, E. & Schulz, O. Vetoing atmospheric neutrinos in a high energy neutrino telescope. Phys. Rev. D. 79, 043009 (2009).

    Article  ADS  Google Scholar 

  37. Aartsen, M. G. et al. Phys. Rev. D. 98, 062003 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Resconi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostini, M., Böhmer, M., Bosma, J. et al. The Pacific Ocean Neutrino Experiment. Nat Astron 4, 913–915 (2020). https://doi.org/10.1038/s41550-020-1182-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1182-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing