Reply to: Signatures of sunspot oscillations and the case for chromospheric resonances

The Original Article was published on 20 July 2020

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The telescope pointing stability achieved on 2016 July 14.
Fig. 2: Spectral energies of the original and degraded He i 10830 Å observations.


  1. 1.

    Jess, D. B. et al. A chromospheric resonance cavity in a sunspot mapped with seismology. Nat. Astron. 4, 220–227 (2019).

    Article  ADS  Google Scholar 

  2. 2.

    Arber, T. D., Longbottom, A. W., Gerrard, C. L. & Milne, A. M. A staggered grid, Lagrangian-Eulerian remap code for 3-D MHD Simulations. J. Comput. Phys. 171, 151–181 (2001).

    MathSciNet  Article  ADS  Google Scholar 

  3. 3.

    Botha, G. J. J., Arber, T. D., Nakariakov, V. M. & Zhugzhda, Y. D. Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84 (2011).

    Article  ADS  Google Scholar 

  4. 4.

    Snow, B., Botha, G. J. J. & Régnier, S. Chromospheric seismology above sunspot umbrae. Astron. Astrophys. 580, A107 (2015).

    Article  ADS  Google Scholar 

  5. 5.

    Felipe, T. Signatures of sunspot oscillations and the case for chromospheric resonances. Nat. Astron. (2020).

  6. 6.

    Jess, D. B. et al. ROSA: a high-cadence, synchronized multi-camera solar imaging system. Sol. Phys. 261, 363–373 (2010).

    Article  ADS  Google Scholar 

  7. 7.

    Jolissaint, L. Synthetic modeling of astronomical closed loop adaptive optics. J. Eur. Opt. Soc. 5, 10055 (2010).

    Article  Google Scholar 

  8. 8.

    Tritschler, A. et al. Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron. Nach. 337, 1064–1069 (2016).

    Article  ADS  Google Scholar 

  9. 9.

    Felipe, T., Khomenko, E. & Collados, M. Magneto-acoustic waves in sunspots: first results from a new three-dimensional nonlinear magnetohydrodynamic code. Astrophys. J. 719, 357–377 (2010).

    Article  ADS  Google Scholar 

  10. 10.

    Gudiksen, B. V. et al. The stellar atmosphere simulation code Bifrost: code description and validation. Astron. Astrophys. 531, A154 (2011).

    Article  Google Scholar 

  11. 11.

    Steiner, O. et al. First local helioseismic experiments with CO5BOLD. Astron. Nach. 328, 323–328 (2007).

    Article  ADS  Google Scholar 

  12. 12.

    Vögler, A. et al. Simulations of magneto-convection in the solar photosphere: equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

  13. 13.

    Johnston, C. D., Hood, A. W., Cargill, P. J. & De Moortel, I. A new approach for modelling chromospheric evaporation in response to enhanced coronal heating. I. The method. Astron. Astrophys. 597, A81 (2017).

    Article  ADS  Google Scholar 

  14. 14.

    Johnston, C. D. et al. Modelling the solar transition region using an adaptive conduction method. Astron. Astrophys. 635, A168 (2020).

    Article  Google Scholar 

  15. 15.

    Mauas, P. J. D. et al. Helium line formation and abundance in a solar active region. Astrophys. J. 619, 604–612 (2005).

    Article  ADS  Google Scholar 

  16. 16.

    Ogawa, H. & Fujiwara, T. Analyses of three shock interactions in magnetohydrodynamics: aligned-field case. Phys. Plasmas 3, 2924–2938 (1996).

    Article  ADS  Google Scholar 

  17. 17.

    Delmont, P., Keppens, R. & van der Holst, B. An exact Riemann-solver-based solution for regular shock refraction. J. Fluid Mech. 627, 33–53 (2009).

    MathSciNet  Article  ADS  Google Scholar 

Download references


We thank D. Christian, S. Houston and S. Krishna Prasad, who contributed to the design of the observational instrumentation setup and helped to acquire the observations in ref. 1.

Author information




D.B.J. designed the observational instrumentation setup and acquired the observations. D.B.J. and M.S. performed analysis of the observations utilized in the present study. B.S. designed and carried out numerical MHD simulations. All authors interpreted the observations and simulations, discussed the results, and commented on the manuscript.

Corresponding author

Correspondence to David B. Jess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jess, D.B., Snow, B., Fleck, B. et al. Reply to: Signatures of sunspot oscillations and the case for chromospheric resonances. Nat Astron (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing