Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Signatures of sunspot oscillations and the case for chromospheric resonances

The Original Article was published on 20 July 2020

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The telescope pointing stability achieved on 2016 July 14.
Fig. 2: Spectral energies of the original and degraded He i 10830 Å observations.

References

  1. Jess, D. B. et al. A chromospheric resonance cavity in a sunspot mapped with seismology. Nat. Astron. 4, 220–227 (2019).

    Article  ADS  Google Scholar 

  2. Arber, T. D., Longbottom, A. W., Gerrard, C. L. & Milne, A. M. A staggered grid, Lagrangian-Eulerian remap code for 3-D MHD Simulations. J. Comput. Phys. 171, 151–181 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  3. Botha, G. J. J., Arber, T. D., Nakariakov, V. M. & Zhugzhda, Y. D. Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84 (2011).

    Article  ADS  Google Scholar 

  4. Snow, B., Botha, G. J. J. & Régnier, S. Chromospheric seismology above sunspot umbrae. Astron. Astrophys. 580, A107 (2015).

    Article  ADS  Google Scholar 

  5. Felipe, T. Signatures of sunspot oscillations and the case for chromospheric resonances. Nat. Astron. https://doi.org/10.1038/s41550-020-1157-5 (2020).

  6. Jess, D. B. et al. ROSA: a high-cadence, synchronized multi-camera solar imaging system. Sol. Phys. 261, 363–373 (2010).

    Article  ADS  Google Scholar 

  7. Jolissaint, L. Synthetic modeling of astronomical closed loop adaptive optics. J. Eur. Opt. Soc. 5, 10055 (2010).

    Article  Google Scholar 

  8. Tritschler, A. et al. Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron. Nach. 337, 1064–1069 (2016).

    Article  ADS  Google Scholar 

  9. Felipe, T., Khomenko, E. & Collados, M. Magneto-acoustic waves in sunspots: first results from a new three-dimensional nonlinear magnetohydrodynamic code. Astrophys. J. 719, 357–377 (2010).

    Article  ADS  Google Scholar 

  10. Gudiksen, B. V. et al. The stellar atmosphere simulation code Bifrost: code description and validation. Astron. Astrophys. 531, A154 (2011).

    Article  Google Scholar 

  11. Steiner, O. et al. First local helioseismic experiments with CO5BOLD. Astron. Nach. 328, 323–328 (2007).

    Article  ADS  Google Scholar 

  12. Vögler, A. et al. Simulations of magneto-convection in the solar photosphere: equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

  13. Johnston, C. D., Hood, A. W., Cargill, P. J. & De Moortel, I. A new approach for modelling chromospheric evaporation in response to enhanced coronal heating. I. The method. Astron. Astrophys. 597, A81 (2017).

    Article  ADS  Google Scholar 

  14. Johnston, C. D. et al. Modelling the solar transition region using an adaptive conduction method. Astron. Astrophys. 635, A168 (2020).

    Article  Google Scholar 

  15. Mauas, P. J. D. et al. Helium line formation and abundance in a solar active region. Astrophys. J. 619, 604–612 (2005).

    Article  ADS  Google Scholar 

  16. Ogawa, H. & Fujiwara, T. Analyses of three shock interactions in magnetohydrodynamics: aligned-field case. Phys. Plasmas 3, 2924–2938 (1996).

    Article  ADS  Google Scholar 

  17. Delmont, P., Keppens, R. & van der Holst, B. An exact Riemann-solver-based solution for regular shock refraction. J. Fluid Mech. 627, 33–53 (2009).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank D. Christian, S. Houston and S. Krishna Prasad, who contributed to the design of the observational instrumentation setup and helped to acquire the observations in ref. 1.

Author information

Authors and Affiliations

Authors

Contributions

D.B.J. designed the observational instrumentation setup and acquired the observations. D.B.J. and M.S. performed analysis of the observations utilized in the present study. B.S. designed and carried out numerical MHD simulations. All authors interpreted the observations and simulations, discussed the results, and commented on the manuscript.

Corresponding author

Correspondence to David B. Jess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jess, D.B., Snow, B., Fleck, B. et al. Reply to: Signatures of sunspot oscillations and the case for chromospheric resonances. Nat Astron 5, 5–8 (2021). https://doi.org/10.1038/s41550-020-1158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1158-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics