Global helium abundance measurements in the solar corona


Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models1 and indirect measurements through helioseismic observations2, because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic3,4. In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3R (solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2R). The morphology of the He+ corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global images of He ii emission in the solar atmosphere out to 3R in the frame of the visible light polarized emission of the corona out to 6R.
Fig. 2: Polar profiles of the He abundance.
Fig. 3: Magnetic topology of the solar corona in the region where the He abundance was measured.

Data availability

The imaging data that support the plots within this paper and other findings of this study are available from the NASA Goddard Coordinated Data Analysis Workshop (CDAW) Data Center ( or from the corresponding author on reasonable request. The data from Fig. 2 are provided as Source data files.

Code availability

All relevant codes used during this study are available from the corresponding author on reasonable request. Source data are provided with this paper.


  1. 1.

    Christensen-Dalsgaard, J. The ‘standard’ Sun. Space Sci. Rev. 85, 19–36 (1998).

    ADS  Google Scholar 

  2. 2.

    Kosovichev, A. G. et al. Sources of uncertainty in direct seismological measurements of the solar helium abundance. Mon. Not. R. Astron. Soc. 259, 536–558 (1992).

    ADS  Google Scholar 

  3. 3.

    Gabriel, A. H. et al. SpaceLab 2 measurement of the solar coronal helium abundance. Adv. Space Res. 15, 63–67 (1995).

    ADS  Google Scholar 

  4. 4.

    Feldman, U. FIP effect in the solar upper atmosphere: spectroscopic results. Adv. Space Res. 85, 227–240 (1998).

    Google Scholar 

  5. 5.

    Buergi, A. Proton and alpha particle fluxes in the solar wind: results of a three-fluid model. J. Geophys. Res. 97, 3137–3150 (1992).

    ADS  Google Scholar 

  6. 6.

    Aellig, M. R., Lazarus, A. J. & Steinberg, J. T. The solar wind helium abundance: variation with wind speed and the solar cycle. Geophys. Res. Lett. 28, 2767–2770 (2001).

    ADS  Google Scholar 

  7. 7.

    Hansteen, V. & Velli, M. Solar wind models from the chromosphere to 1 AU. Space Sci. Rev. 172, 89–121 (2012).

    ADS  Google Scholar 

  8. 8.

    Fineschi, S. et al. Ultraviolet and visible-light coronagraphic imager (UVCI) for HERSCHEL (Helium Resonance Scattering in Corona & HELiosphere). Proc. SPIE 4853, 162–171 (2003).

    ADS  Google Scholar 

  9. 9.

    Romoli, M. et al. The HERSCHEL/SCORE visible and UV coronagraph. In Proc. Second Solar Orbiter Workshop SP-641 (eds Marsch, E. et al.) 79 (ESA, 2007).

  10. 10.

    Auchère, F. et al. HECOR: HElium CORonagraphy aboard the Herschel sounding rocket. Proc. SPIE 6689, (2007).

  11. 11.

    Howard, R. A. et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67 (2008).

    ADS  Google Scholar 

  12. 12.

    Schwenn, R. et al. First view of the extended green-line emission corona at solar activity minimum using the Lasco-C1 coronagraph on SOHO. Sol. Phys. 175, 667–684 (1997).

    ADS  Google Scholar 

  13. 13.

    Noci, G. et al. The quiescent corona and slow solar wind. In Proc. Fifth SOHO Workshop SP-404 (ed. Wilson, A.) 75–84 (ESA, 1997).

  14. 14.

    Raymond, J. C. et al. Composition of coronal streamers from the SOHO ultraviolet coronagraph spectrometer. Sol. Phys. 175, 645–665 (1997).

    ADS  Google Scholar 

  15. 15.

    Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998).

    ADS  Google Scholar 

  16. 16.

    Withbroe, G. L. et al. Probing the solar wind acceleration region using spectroscopic techniques. Space Sci. Rev. 33, 17–52 (1982).

    ADS  Google Scholar 

  17. 17.

    Kasper, J. C. et al. Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. Astrophys. J. 745, 162–168 (2012).

    ADS  Google Scholar 

  18. 18.

    Borrini, G. et al. Solar wind helium and hydrogen structure near the heliospheric current sheet - a signal of coronal streamers at 1 AU. J. Geophys. Res. 86, 4565–4573 (1981).

    ADS  Google Scholar 

  19. 19.

    Noci, G. & Gavryuseva, E. Plasma outflows in coronal streamers. Astrophys. J. 658, L63–L66 (2007).

    ADS  Google Scholar 

  20. 20.

    Geiss, J., Hirt, P. & Leutwyler, H. On acceleration and motion of ions in corona and solar wind. Sol. Phys. 12, 458–483 (1970).

    ADS  Google Scholar 

  21. 21.

    Wang, Y.-M. Relating the solar wind helium abundance to the coronal magnetic field. Astrophys. J. 683, 499–509 (2008).

    ADS  Google Scholar 

  22. 22.

    Wang, Y.-M. & Sheeley, N. R. Jr. Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990).

    ADS  Google Scholar 

  23. 23.

    Antonucci, E. Wind in the solar corona: Dynamics and composition. Space Sci. Rev. 124, 35–50 (2006).

    ADS  Google Scholar 

  24. 24.

    Antonucci, E., Abbo, L. & Telloni, D. UVCS observations of temperature and velocity profiles in coronal holes. Space Sci. Rev. 172, 5–22 (2012).

    ADS  Google Scholar 

  25. 25.

    Li, J. Physical structure of a coronal streamer on the closed-field region as observed from UVCS/SOHO and SXT/Yohkoh. Astrophys. J. 506, 431–438 (1998).

    ADS  Google Scholar 

  26. 26.

    Rakowski, C. E. & Laming, J. M. On the origin of the slow speed solar wind: helium abundance variations. Astrophys. J. 754, 65–75 (2012).

    ADS  Google Scholar 

  27. 27.

    Laming, J. M. Non-WKB models of the FIP effect: the role of slow-mode waves. Astrophys. J. 744, 115–128 (2012).

    ADS  Google Scholar 

  28. 28.

    Patchett, B. et al. The coronal helium abundance experiment on Spacelab 2. Space Sci. Rev. 29, 431–437 (1981).

    ADS  Google Scholar 

  29. 29.

    Laming, J. M. & Feldman, U. The solar helium abundance in the outer corona determined from observations with SUMER/SOHO. Astrophys. J. 546, 552–558 (2003).

    ADS  Google Scholar 

  30. 30.

    Kohl, J. L. et al. First results from the SOHO ultraviolet coronagraph spectrometer. Sol. Phys. 175, 613–644 (1997).

    ADS  Google Scholar 

  31. 31.

    Delaboudinière, J. -P. et al. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995).

    ADS  Google Scholar 

  32. 32.

    Brueckner, G. E. et al. The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995).

    ADS  Google Scholar 

  33. 33.

    Kohl, J. L. et al. The ultraviolet coronagraph spectrometer for the Solar and Heliospheric Observatory. Sol. Phys. 162, 313–356 (1995).

    ADS  Google Scholar 

  34. 34.

    Fineschi, S. et al. METIS: a novel coronagraph design for the Solar Orbiter mission. Proc. SPIE 8443, 84433H–1 (2012).

    Google Scholar 

  35. 35.

    Fineschi, S. et al. Optical design of the multi-wavelength imaging coronagraph Metis for the Solar Orbiter mission. Exp. Astron. 49, 239–263 (2020).

    ADS  Google Scholar 

  36. 36.

    Antonucci, E. et al. Metis: The Solar Orbiter visible light and ultraviolet coronal imager. Astron. Astrophys. (in the press).

  37. 37.

    Auchère, F. et al. Innovative designs for the imaging suite on Solar Orbiter. Proc. SPIE 5901, 590115 (2005).

    Google Scholar 

  38. 38.

    Rochus, P. et al. The extreme ultraviolet imager on Solar Orbiter. Astron. Astrophys. (in the press).

  39. 39.

    Defise, J. M. Analyse des performances instrumentales du téléscope spatial EIT. PhD thesis, Université de Liège (1999).

  40. 40.

    Arnaud, M. & Rothenflug, R. An updated evaluation of recombination and ionization rates. Astron. Astrophy. Suppl. Ser. 60, 425–457 (1985).

    ADS  Google Scholar 

  41. 41.

    Elwert, G. Über die Ionisations- und Rekombinationsprozesse in einem Plasma und die Ionisationsformel der Sonnenkorona. Z. Naturforsch. 7, 432–439 (1952).

    ADS  Google Scholar 

  42. 42.

    Gabriel, A. H. & Jordan, C. in Case Studies in Atomic Collision Physics 1st edn, Vol. 2 (eds McDaniel, E. W. & McDowell, M. R. C.) Ch. 4 (North-Holland, 1972).

  43. 43.

    Dere, K. P. et al. CHIANTI - an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 498, 915–929 (2009).

    ADS  Google Scholar 

  44. 44.

    Lemaire, P. et al. Variation of the full Sun hydrogen Lyman profiles through solar cycle 23. Adv. Space Res. 35, 384–387 (2005).

    ADS  Google Scholar 

  45. 45.

    Doschek, G. A., Behring, W. E. & Feldman, U. The widths of the solar He i and He ii lines at 584, 537, and 304 Å. Astrophys. J. 190, L141–L142 (1974).

    ADS  Google Scholar 

  46. 46.

    Brosius, J. W. Measuring active and quiet-sun coronal plasma properties with extreme-ultraviolet spectra from SERTS. Astrophys. J. Suppl. 106, 143–164 (1996).

    ADS  Google Scholar 

  47. 47.

    Auchère., F. Effect of the H i Lyα chromospheric flux anisotropy on the total intensity of the resonantly scattered coronal radiation. Astrophys. J. 622, 737–743 (2005).

    ADS  Google Scholar 

  48. 48.

    Antonucci, E., Abbo, L. & Dodero, M. A. Slow wind and magnetic topology in the solar minimum corona in 1996-1997. Astron. Astrophys. 435, 699–711 (2005).

    ADS  Google Scholar 

  49. 49.

    Gibson, S. et al. Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets. J. Geophys. Res. 104, 9691–9700 (1999).

    ADS  Google Scholar 

  50. 50.

    Noci, G., Kohl, J. L. & Withbroe, G. L. Solar wind diagnostics from Doppler-enhanced scattering. Astrophys. J. 315, 706–715 (1987).

    ADS  Google Scholar 

  51. 51.

    Auchère, F. & Artzner, G. E. EIT observations of the 15 November 1999 Mercury transit. Sol. Phys. 219, 217–230 (2004).

    ADS  Google Scholar 

  52. 52.

    Auchère, F. An observational study of helium in the solar corona with the EIT instrument on board the SOHO spacecraft. PhD thesis, Université Paris VI (2000).

Download references


The HERSCHEL suborbital investigation was funded by the NASA Heliophysics Living With a Star Program. The SCORE coronagraph (principal investigator, E.A.) was funded by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) under grant COFIN 2002, the Italian Space Agency (ASI) under grant ASI-I/015/07/0 and the Osservatorio Astrofisico di Torino of the Istituto Nazionale di Astrofisica (INAF). The HECOR coronagraph (principal investigator, F.A.) was developed at IAS and funded by Centre National d’Etudes Spatiales (CNES). The magnetic field extrapolations were performed using models that are part of the SolarModels facilities. SolarModels is supported by CNES. J.M.L. and D.W. were supported by NASA Heliophysics Supporting Research (NNH16AC39I), Heliophysics Grand Challenges (NNH17AE96I), Heliophysics Guest Investigators (80HQTR19T0029) and by basic research funds of the CNR. The HERSCHEL team would like to express their extreme gratitude to Dave Roberts, who, although he is no longer with us, continues to inspire by his example and dedication to the many missions he helped over the course of his long career. E.A. would also like to acknowledge A. Gherardi, L. Gori, G. Noci, E. Pace, D. Paganini, D. Gardiol, D. Loreggia, V. Da Deppo, M. G. Pelizzo, G. Naletto, P. Nicolosi and G. Tondello for their contributions to the development of SCORE.

Author information




All authors contributed to the proposal and planning of observations, the data interpretation and the writing of the manuscript. J.D.M. is principal investigator of the HERSCHEL sounding rocket. E.A. is co-principal investigator and led the development of SCORE with assistance from S.F., M.R., G.M., M.F., F.L., A.M.M., M.P. and L.Z. F.A. led the development of HECOR with assistance from F.R., J.-P.M. and J.-C.L. J.S.N. was HERSCHEL project scientist and led the development of HEIT with assistance from J.L., J.-P.W. and D.W. D.T. developed the codes for the analysis of the SCORE data and for the cross-checking with the UVCS data. G.R., L.A., J.M.L., N.B., C.G. and A.C. assisted in analysing data. J.L.K. and L.D.G. performed the UVCS observations.

Corresponding authors

Correspondence to John D. Moses or Jeffrey Newmark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 2

Calibrated data for H i, He ii and He abundance at three coronal heights.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moses, J.D., Antonucci, E., Newmark, J. et al. Global helium abundance measurements in the solar corona. Nat Astron (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing