New maser species tracing spiral-arm accretion flows in a high-mass young stellar object


Numerical simulations have predicted that substructures such as spiral arms can be produced through a gravitationally unstable disk around high-mass young stellar objects (HMYSOs)1,2,3,4,5. Recent high-resolution observations from the Atacama Large Millimeter/submillimeter Array have investigated these substructures at a spatial resolution of ~100 au (refs. 6,7,8,9,10). An accretion burst, which is a manifestation of an increase in the accretion rate caused by a gravitational instability in the disk1,11,12, can result in luminosity outbursting phenomena—as has been seen in several HMYSOs13,14. However, no clear relationship between the accretion bursts and disk substructures has been established. Here we report the detections of three new molecular maser species, HDO, HNCO and 13CH3OH, from the direction of the HMYSO G358.93-0.03 during a 6.7 GHz methanol maser flaring event15. High-quality imaging of the three new maser species exhibits consistent observational evidence that these masers closely trace the spiral-arm substructures around this HMYSO. The rapid decay of the spectral lines emitted from these molecules suggests that these are transient phenomena (for only ~1 month), probably associated with rapid changes in radiation field due to an accretion burst. Therefore, these new maser species provide evidence linking the spiral-arm substructure with an accretion burst, both expected from massive disk instabilities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spatial distribution and spectra of multiple molecular maser transitions detected in the direction of G358.93-0.03 with the VLA.
Fig. 2: Kinematic model results for a two-arm spiral structure traced by HDO, HNCO and 13CH3OH masers.
Fig. 3: The expected brightness temperatures under a radiative–radiative pumping.
Fig. 4: The decay in the peak flux density of HDO, HNCO and 13CH3OH maser features obtained from VLA and TMRT observations.

Data availability

The data from both TMRT and VLA that support the plots within this paper and other findings of this study are available from X.C. on reasonable request. Source data are provided with this paper.

Code availability

The code for the pumping model of HDO and HNCO masers is available at


  1. 1.

    Meyer, D. M.-A., Vorobyov, E. I., Kuiper, R. & Kely, W. On the existence of accretion-driven bursts in massive star formation. Mon. Not. R. Astron. Soc. 464, L90–L94 (2017).

    ADS  Google Scholar 

  2. 2.

    Meyer, D. M.-A., Kuiper, R., Kley, W., Johnston, K. G. & Vorobyov, E. Forming spectroscopic massive protobinaries by disc fragmentation. Mon. Not. R. Astron. Soc. 473, 3615–3637 (2018).

    ADS  Google Scholar 

  3. 3.

    Meyer, D. M.-A. et al. On the ALMA observability of nascent massive multiple systems formed by gravitational instability. Mon. Not. R. Astron. Soc. 487, 4473–4491 (2019).

    ADS  Google Scholar 

  4. 4.

    Ahmadi, A., Kuiper, R. & Beuther, H. Disc kinematics and stability in high-mass star formation: linking simulations and observations. Astron. Astrophys. 632, A50 (2019).

    ADS  Google Scholar 

  5. 5.

    Jankovic, M. R. et al. Observing substructure in circumstellar discs around massive young stellar objects. Mon. Not. R. Astron. Soc. 482, 4673–4686 (2019).

    ADS  Google Scholar 

  6. 6.

    Johnston, K. G. et al. Spiral arms and instability within the AFGL 4176 mm1 disc. Astron. Astrophys. 634, L11 (2020).

    ADS  Google Scholar 

  7. 7.

    Maud, L. T. et al. The ALMA view of W33A: a spiral filament feeding the candidate disc in MM1-Main. Mon. Not. R. Astron. Soc. 467, L120–L124 (2017).

    ADS  Google Scholar 

  8. 8.

    Maud, L. T. et al. Substructures in the Keplerian disc around the O-type (proto-)star G17.64+0.16. Astron. Astrophys. 627, L6 (2019).

    ADS  Google Scholar 

  9. 9.

    Ilee, J. D. et al. G11.92-0.61 MM 1: a fragmented Keplerian disk surrounding a proto-O Star. Astrophys. J. Lett. 869, L24 (2018).

    ADS  Google Scholar 

  10. 10.

    Motogi, K. et al. The first birds-eye view of a gravitationally unstable accretion disk in high-mass star formation. Astrophys. J. Lett. 877, L25 (2019).

    ADS  Google Scholar 

  11. 11.

    Laughlin, G. & Bodenheimer, P. Nonaxisymmetric evolution in protostellar disks. Astrophys. J. 436, 335–354 (1994).

    ADS  Google Scholar 

  12. 12.

    Meyer, D. M.-A. et al. Burst occurrence in young massive stellar objects. Mon. Not. R. Astron. Soc. 482, 5459–5476 (2019).

    ADS  Google Scholar 

  13. 13.

    Hunter, T. R. et al. An extraordinary outburst in the massive protostellar system NGC6334I-MM1: quadrupling of the millimeter continuum. Astrophys. J. Lett. 837, L29 (2017).

    ADS  Google Scholar 

  14. 14.

    Garatti, A. C. O. et al. Disk-mediated accretion burst in a high-mass young stellar object. Nat. Phys. 13, 276–279 (2017).

    Google Scholar 

  15. 15.

    Sugiyama, K., Saito, Y., Yonekura, Y. & Momose, M. Bursting activity of the 6.668-GHz CH3 OH maser detected in G 358.93-00.03 using the Hitachi 32-m. Astron. Telegr. 12446 (2019).

  16. 16.

    Caswell, J. L. et al. The 6-GHz methanol multibeam maser catalogue: I. Galactic Centre region, longitudes 345 to 6. Mon. Not. R. Astron. Soc. 404, 1029–1060 (2010).

    ADS  Google Scholar 

  17. 17.

    Breen, S. L. et al. Discovery of six new class II methanol maser transitions, including the unambiguous detection of three torsionally excited lines toward G358.931-0.030. Astrophys. J. Lett. 876, L25 (2019).

    ADS  Google Scholar 

  18. 18.

    MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. Mon. Not. R. Astron. Soc. 489, 3981–3989 (2019).

    ADS  Google Scholar 

  19. 19.

    Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nat. Astron. 4, 506–510 (2020).

    ADS  Google Scholar 

  20. 20.

    Brogan, C. L. et al. Sub-arcsecond (sub)millimeter imaging of the massive protocluster G358.93-0.03: discovery of 14 new methanol maser transitions associated with a hot core. Astrophys. J. Lett. 881, L39 (2019).

    ADS  Google Scholar 

  21. 21.

    Chen, X. et al. 13CH3OH masers associated with an accretion burst in high-mass young stellar object. Astrophys. J. Lett. 890, 22 (2020).

    ADS  Google Scholar 

  22. 22.

    Reid, M. J., Dame, T. M., Menten, K. M. & Brunthaler, A. A parallax-based distance estimator for spiral arm sources. Astrophys. J. 823, 77 (2016).

    ADS  Google Scholar 

  23. 23.

    Hernández-Hernández, V., Zapata, L., Kurtz, S. & Garay, G. SMA millimeter observations of hot molecular cores. Astrophys. J. 786, 38 (2014).

    ADS  Google Scholar 

  24. 24.

    Meyer, D. M., Haemmerlé, L. & Vorobyov, E. I. On the episodic excursions of massive protostars in the Hertzsprung Russell diagram. Mon. Not. R. Astron. Soc. 484, 2482–2498 (2019).

    ADS  Google Scholar 

  25. 25.

    Hosokawa, T., Yorke, H. W. & Omukai, K. Evolution of massive protostars via disk accretion. Astrophys. J. 721, 478 (2010).

    ADS  Google Scholar 

  26. 26.

    Hunter, T. R. et al. The extraordinary outburst in the massive protostellar system NGC 6334I-MM1: emergence of strong 6.7 GHz methanol masers. Astrophys. J. 854, 170 (2018).

    ADS  Google Scholar 

  27. 27.

    Moscadelli, L. et al. Extended CH3 OH maser flare excited by a bursting massive YSO. Astron. Astrophys. 600, L8 (2017).

    ADS  Google Scholar 

  28. 28.

    Izquierdo, A. F. et al. Radiative transfer modelling of W33A MM1: 3D structure and dynamics of a complex massive star-forming region. Mon. Not. R. Astron. Soc. 478, 2505–2525 (2018).

    ADS  Google Scholar 

  29. 29.

    Liu, H. B. et al. ALMA resolves the spiraling accretion flow in the luminous OB cluster-forming region G33.92.0.11. Astrophys. J. 804, 37 (2015).

    ADS  Google Scholar 

  30. 30.

    Audard, M. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 387–410 (Univ. Arizona Press, 2014).

  31. 31.

    Reipurth, B. & Aspin, C. in Evolution of Cosmic Objects through their Physical Activity: Victor Ambartsumian Centennial Volume (eds Harutyunyan, H. et al.) 19–38 (Gitutyun, 2010).

  32. 32.

    Nakano, T. Conditions for the formation of massive stars through nonspherical accretion. Astrophys. J. 345, 464–471 (1989).

    ADS  Google Scholar 

  33. 33.

    Jijina, J. & Adams, F. C. Infall collapse solutions in the inner limit: radiation pressure and its effects on star formation. Astrophys. J. 462, 874–887 (1996).

    ADS  Google Scholar 

  34. 34.

    Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R. & Cunningham, A. J. The formation of massive star systems by accretion. Science 323, 754–757 (2009).

    ADS  Google Scholar 

  35. 35.

    Kuiper, R., Klahr, H., Beuther, H. & Henning, T. Circumventing the radiation pressure barrier in the formation of massive stars via disk accretion. Astrophys. J. 722, 1556–1576 (2010).

    ADS  Google Scholar 

  36. 36.

    Kuiper, R., Klahr, H., Beuther, H. & Henning, T. Three-dimensional simulation of massive star formation in the disk accretion scenario. Astrophys. J. 732, 20 (2011).

    ADS  Google Scholar 

  37. 37.

    Müller, H. S. P., Thorwirth, S., Roth, D. A. & Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 370, L49–L52 (2001).

    ADS  Google Scholar 

  38. 38.

    Müller, H. S. P., Schlöder, F., Stutzki, J. & Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005).

    ADS  Google Scholar 

  39. 39.

    Pickett, H. M. et al. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).

    ADS  Google Scholar 

  40. 40.

    Gray, M Maser Sources in Astrophysics. (Cambridge Univ. Press, 2012).

  41. 41.

    Johns, K. P., Cragg, D. M., Godfrey, P. D. & Sobolev, A. M. Class II maser candidates in substituted methanol: CH3 OD, 13 CH3 OH, CH3 18 OH and CH3 SH. Mon. Not. R. Astron. Soc. 300, 999–1005 (1998).

    ADS  Google Scholar 

  42. 42.

    Sobolev, A. M. & Deguchi, S. Pump cycles and population flow networks in astrophysical masers: an application to class II methanol masers with different saturation degrees. Astrophys. J. 433, 719–724 (1994).

    ADS  Google Scholar 

  43. 43.

    Cragg, D. M., Sobolev, A. M. & Godfrey, P. D. Models of class II methanol masers based on improved molecular data. Mon. Not. R. Astron. Soc. 360, 533–545 (2005).

    ADS  Google Scholar 

  44. 44.

    Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369 (2005).

    ADS  Google Scholar 

  45. 45.

    Gieser, C. et al. Chemical complexity in high-mass star formation: an observational and modeling case study of the AFGL 2591 VLA 3 hot core. Astron. Astrophys. 631, A142 (2019).

    Google Scholar 

  46. 46.

    Neill, J. L. et al. The abundance of H2O and HDO in Orion Kl from Herschel/HIFI. Astrophys. J. 770, 142 (2013).

    ADS  Google Scholar 

Download references


We thank TMRT and VLA staff for their assistance in obtaining the data presented in this paper. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under agreement by the Associated Universities, Inc. X.C. was supported by the National Natural Science Foundation of China (grant numbers 11590781, 11873002, 12011530065 and 11590780), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019), Astronomy Science and Technology Research Laboratory of Department of Education of Guangdong Province, and Key Laboratory for Astronomical Observation and Technology of Guangzhou. A.M.S. and S.P. were supported by the Russian Science Foundation (grant number 18-12-00193). S.P.E. acknowledges the support of an ARC Discovery Project (project number DP180101061).

Author information




X.C. and A.M.S. wrote the initial manuscript, obtained and reduced the data, and led the initial observing proposals. Z.-Y.R. carried out the kinematic model analysis for the maser spots. S.P. performed the pumping model calculations for the masers. S.L.B., S.P.E. Z.-Q.S. and B.L. were involved in the initial observing proposal of the VLA and TMRT and helped to improve the manuscript. G.C.M., W.B., C.B., T.H., T.R.H., H.L., K.M., K.S., B.S., Y.G. and X.Z. are members of the M2O group and helped improve to the text.

Corresponding authors

Correspondence to Xi Chen or Andrej M. Sobolev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The damping factor γ/γ0 as a function of distance from center protostar.

The vertical dashed line denotes the position of turning point (r0 =410 au).

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Source data

Source Data Fig. 3

Pumping model data.

Source Data Fig. 4

Maser monitoring data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Sobolev, A.M., Ren, Z. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nat Astron (2020).

Download citation


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing