Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes


Aerosols are common in the atmospheres of exoplanets across a wide swath of temperatures, masses and ages1,2,3. These aerosols strongly impact observations of transmitted, reflected and emitted light from exoplanets, obfuscating our understanding of exoplanet thermal structure and composition4,5,6. Knowing the dominant aerosol composition would facilitate interpretations of exoplanet observations and theoretical understanding of their atmospheres. A variety of compositions have been proposed, including metal oxides and sulfides, iron, chromium, sulfur and hydrocarbons7,8,9,10,11. However, the relative contributions of these species to exoplanet aerosol opacity is unknown. Here we show that the aerosol composition of giant exoplanets observed in transmission is dominated by silicates and hydrocarbons. By constraining an aerosol microphysics model with trends in giant exoplanet transmission spectra, we find that silicates dominate aerosol opacity above planetary equilibrium temperatures of 950 K due to low nucleation energy barriers and high elemental abundances, while hydrocarbon aerosols dominate below 950 K due to an increase in methane abundance. Our results are robust to variations in planet gravity and atmospheric metallicity within the range of most giant transiting exoplanets. We predict that spectral signatures of condensed silicates in the mid-infrared are most prominent for hot (>1,600 K), low-gravity (<10 m s−2) objects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Exoplanet cloudiness as a function of equilibrium temperature, gravity and atmospheric metallicity.
Fig. 2: Evolution of exoplanet aerosols with temperature.
Fig. 3: Nucleation rates of exoplanet condensates.
Fig. 4: Predictions for the amplitude of the 10 μm condensed silicate spectral feature in transmission.

Data availability

Observed AH values shown in Fig. 1 are published in ref. 15 and presented in Supplementary Table 1. Model results that support Figs. 1, 2 and 4 within the main text are provided as Source Data files. Model results that support the plots in the Supplementary Information, including the temperature–pressure and eddy diffusion coefficient profiles, composition profiles, compilation of refractive indices of exoplanet aerosol materials, and synthetic transmission spectra are available from the corresponding author upon reasonable request.

Code availability

Many of the numerical models used in this work, including CARMA, the thermal structure model, the planetary interior model and the transmission spectrum model are not public. However, they are available from the corresponding author upon reasonable request. GGchem is public at; pymiecoated is public at We include a code to compute heterogeneous and homogeneous nucleation rates, which we used to generate Fig. 3 in the main text, as a Supplementary Software file (


  1. 1.

    Skemer, A. J. et al. Directly imaged L–T transition exoplanets in the mid-infrared. Astrophys. J. 792, 17 (2014).

    ADS  Google Scholar 

  2. 2.

    Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    ADS  Google Scholar 

  3. 3.

    Crossfield, I. J. M. & Kreidberg, L. Trends in atmospheric properties of Neptune-size exoplanets. Astron. J. 154, 261 (2017).

    ADS  Google Scholar 

  4. 4.

    Barstow, J. K., Aigrain, S., Irwin, P. G. J. & Sing, D. K. A consistent retrieval analysis of 10 hot Jupiters observed in transmission. Astrophys. J. 834, 50 (2017).

    ADS  Google Scholar 

  5. 5.

    Stevenson, K. B. et al. Spitzer phase curve constraints for WASP-43b at 3.6 and 4.5 µm. Astron. J. 153, 68 (2017).

    ADS  Google Scholar 

  6. 6.

    Marley, M. S. et al. Reflected spectra and albedos of extrasolar giant planets. I. Clear and cloudy atmospheres. Astrophys. J. 513, 879–893 (1999).

    ADS  Google Scholar 

  7. 7.

    Lodders, K. Alkali element chemistry in cool dwarf atmospheres. Astrophys. J. 519, 793–801 (1999).

    ADS  Google Scholar 

  8. 8.

    Helling, C. et al. A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres. Mon. Not. R. Astron. Soc. 391, 1854–1873 (2008).

    ADS  Google Scholar 

  9. 9.

    Visscher, C., Lodders, K. & Fegley, B.Jr Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. Iron, magnesium, and silicon. Astrophys. J. 716, 1060–1075 (2010).

    ADS  Google Scholar 

  10. 10.

    Morley, C. V. et al. Thermal emission and reflected light spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).

    ADS  Google Scholar 

  11. 11.

    Zahnle, K., Marley, M. S., Morley, C. V. & Moses, J. I. Photolytic hazes in the atmosphere of 51 Eri B. Astrophys. J. 824, 137 (2016).

    ADS  Google Scholar 

  12. 12.

    Marley, M. S., Ackerman, A. S., Cuzzi, J. N. & Kitzmann, D. In Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J. et al.) 367–391 (Univ. Arizona Press, 2013).

  13. 13.

    Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (D. Reidel Publishing, 1978).

  14. 14.

    Stevenson, K. B. Quantifying and predicting the presence of clouds in exoplanet atmospheres. Astrophys. J. Lett. 817, L16 (2016).

    ADS  Google Scholar 

  15. 15.

    Fu, G. et al. Statistical analysis of Hubble/WFC3 transit spectroscopy of extrasolar planets. Astrophys. J. Lett. 847, L22 (2017).

    ADS  Google Scholar 

  16. 16.

    Morley, C. V. et al. Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012).

    ADS  Google Scholar 

  17. 17.

    Parmentier, V., Fortney, J. J., Showman, A. P., Morley, C. & Marley, M. S. Transitions in the cloud composition of hot Jupiters. Astrophys. J. 828, 22 (2016).

    ADS  Google Scholar 

  18. 18.

    Lodders, K. & Fegley, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002).

    ADS  Google Scholar 

  19. 19.

    Hörst, S. M. Titan’s atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017).

    ADS  Google Scholar 

  20. 20.

    Zhang, X., Strobel, D. F. & Imanaka, H. Haze heats Pluto’s atmosphere yet explains its cold temperature. Nature 551, 352–355 (2017).

    ADS  Google Scholar 

  21. 21.

    Lavvas, P. & Koskinen, T. Aerosol properties of the atmospheres of extrasolar giant planets. Astrophys. J. 847, 32 (2017).

    ADS  Google Scholar 

  22. 22.

    Komacek, T. D. & Showman, A. P. Atmospheric circulation of hot Jupiters: dayside–nightside temperature differences. Astrophys. J. 821, 16 (2016).

    ADS  Google Scholar 

  23. 23.

    Powell, D., Zhang, X., Gao, P. & Parmentier, V. Formation of silicate and titanium clouds on hot Jupiters. Astrophys. J. 860, 18 (2018).

    ADS  Google Scholar 

  24. 24.

    Demory, B.-O. et al. Inference of inhomogeneous clouds in an exoplanet atmosphere. Astrophys. J. Lett. 776, L25 (2013).

    ADS  Google Scholar 

  25. 25.

    Showman, A. P., Lewis, N. K. & Fortney, J. J. Three-dimensional atmospheric circulation of warm and hot Jupiters: effects of orbital distance, rotation period, and nonsynchronous rotation. Astrophys. J. 801, 95 (2015).

    ADS  Google Scholar 

  26. 26.

    Keating, D., Cowan, N. B. & Dang, L. Uniformly hot nightside temperatures on short-period gas giants. Nat. Astron. 3, 1092–1098 (2019).

    ADS  Google Scholar 

  27. 27.

    Beatty, T. G. et al. Spitzer phase curves of KELT-1b and the signatures of nightside clouds in thermal phase observations. Astron. J. 158, 166 (2019).

    ADS  Google Scholar 

  28. 28.

    Wakeford, H. R. & Sing, D. K. Transmission spectral properties of clouds for hot Jupiter exoplanets. Astron. Astrophys. 573, A122 (2015).

    ADS  Google Scholar 

  29. 29.

    Heng, K. A cloudiness index for transiting exoplanets based on the sodium and potassium lines: tentative evidence for hotter atmospheres being less cloudy at visible wavelengths. Astrophys. J. Lett. 826, L16 (2016).

    ADS  Google Scholar 

  30. 30.

    Tsiaras, A. et al. A population study of gaseous exoplanets. Astron. J. 155, 156 (2018).

    ADS  Google Scholar 

  31. 31.

    Boggs, P. T. & Rogers, J. E. in Statistical Analysis of Measurement Error Models and Applications (eds Brown, P. J. & Fuller, W. A.) 183–194 (American Mathematical Society, 1990).

  32. 32.

    McKay, C. P., Pollack, J. B. & Courtin, R. The thermal structure of Titan’s atmosphere. Icarus 80, 23–53 (1989).

    ADS  Google Scholar 

  33. 33.

    Marley, M. S. et al. Atmospheric, evolutionary, and spectral models of the brown dwarf Gliese 229 B. Science 272, 1919–1921 (1996).

    ADS  Google Scholar 

  34. 34.

    Marley, M. S. & McKay, C. P. Thermal structure of Uranus’ atmosphere. Icarus 138, 268–286 (1999).

    ADS  Google Scholar 

  35. 35.

    Fortney, J. J., Marley, M. S., Lodders, K., Saumon, D. & Freedman, R. Comparative planetary atmospheres: models of TrES-1 and HD 209458b. Astrophys. J. 627, L69–L72 (2005).

    ADS  Google Scholar 

  36. 36.

    Fortney, J. J., Marley, M. S., Saumon, D. & Lodders, K. Synthetic spectra and colors of young giant planet atmospheres: effects of initial conditions and atmospheric metallicity. Astrophys. J. 683, 1104–1116 (2008).

    ADS  Google Scholar 

  37. 37.

    Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color–magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).

    ADS  Google Scholar 

  38. 38.

    Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative─convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).

    ADS  Google Scholar 

  39. 39.

    Thorngren, D. P., Fortney, J. J., Murray-Clay, R. A. & Lopez, E. D. The mass–metallicity relation for giant planets. Astrophys. J. 831, 64 (2016).

    ADS  Google Scholar 

  40. 40.

    Thorngren, D. P. & Fortney, J. J. Bayesian analysis of hot-Jupiter radius anomalies: evidence for ohmic dissipation? Astron. J. 155, 214 (2018).

    ADS  Google Scholar 

  41. 41.

    Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).

    ADS  Google Scholar 

  42. 42.

    Ackerman, A. S. & Marley, M. S. Precipitating condensation clouds in substellar atmospheres. Astrophys. J. 556, 872–884 (2001).

    ADS  Google Scholar 

  43. 43.

    Stephens, D. C. et al. The 0.8–14.5 μm spectra of mid-L to mid-T dwarfs: diagnostics of effective temperature, grain sedimentation, gas transport, and surface gravity. Astrophys. J. 702, 154–170 (2009).

    ADS  Google Scholar 

  44. 44.

    Blain, D. et al. Mapping of Jupiter’s tropospheric NH3 abundance using ground-based IRTF/TEXES observations at 5 μm. Icarus 314, 106–120 (2018).

    ADS  Google Scholar 

  45. 45.

    Gao, P. & Benneke, B. Microphysics of KCl and ZnS Clouds on GJ 1214 b. Astrophys. J. 863, 165 (2018).

    ADS  Google Scholar 

  46. 46.

    Turco, R. P., Hamill, P., Toon, O. B., Whitten, R. C. & Kiang, C. S. A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs. J. Atmos. Sci. 36, 699–717 (1979).

    ADS  Google Scholar 

  47. 47.

    Toon, O. B., Turco, R. P., Westphal, D., Malone, R. & Liu, M. S. A multidimensional model for aerosols: description of computational analogs. J. Atmos. Sci. 45, 2123–2143 (1988).

    ADS  Google Scholar 

  48. 48.

    Jacobson, M. Z. & Turco, R. P. Modeling coagulation among particles of different composition and size. Atmos. Environ. 28, 1327–1338 (1994).

    ADS  Google Scholar 

  49. 49.

    Ackerman, A. S., Toon, O. B. & Hobbs, P. V. Numerical modeling of ship tracks produced by injections of cloud condensation nuclei into marine stratiform clouds. J. Geophys. Res. 100, 7121–7133 (1995).

    ADS  Google Scholar 

  50. 50.

    Gao, P., Marley, M. S. & Ackerman, A. S. Sedimentation efficiency of condensation clouds in substellar atmospheres. Astrophys. J. 855, 86 (2018).

    ADS  Google Scholar 

  51. 51.

    Lodders, K. Titanium and vanadium chemistry in low-mass dwarf stars. Astrophys. J. 577, 974–985 (2002).

    ADS  Google Scholar 

  52. 52.

    Lee, G. K. H., Blecic, J. & Helling, C. Dust in brown dwarfs and extra-solar planets. VI. Assessing seed formation across the brown dwarf and exoplanet regimes. Astron. Astrophys. 614, A126 (2018).

    ADS  Google Scholar 

  53. 53.

    Helling, C. & Woitke, P. Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains. Astron. Astrophys. 455, 325–338 (2006).

    ADS  Google Scholar 

  54. 54.

    Young, T. III. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).

    ADS  Google Scholar 

  55. 55.

    Seki, J. & Hasegawa, H. The heterogeneous condensation of interstellar ice grains. Astrophys. Space Sci. 94, 177–189 (1983).

    ADS  Google Scholar 

  56. 56.

    Rodriguez, J. A., Kuhn, M. & Hrbek, J. Interaction of silver, cesium, and zinc with alumina surfaces: thermal desorption and photoemission studies. J. Phys. Chem. 100, 18240–18248 (1996).

    Google Scholar 

  57. 57.

    Suhasaria, T., Thrower, J. D. & Zacharias, H. Thermal desorption of ammonia from crystalline forsterite surfaces. Mon. Not. R. Astron. Soc. 454, 3317–3327 (2015).

    ADS  Google Scholar 

  58. 58.

    Woitke, P. et al. Equilibrium chemistry down to 100 K: impact of silicates and phyllosilicates on the carbon to oxygen ratio. Astron. Astrophys. 614, A1 (2018).

    Google Scholar 

  59. 59.

    Kawashima, Y. & Ikoma, M. Theoretical transmission spectra of exoplanet atmospheres with hydrocarbon haze: effect of creation, growth, and settling of haze particles. II. Dependence on UV irradiation intensity, metallicity, C/O ratio, eddy diffusion coefficient, and temperature. Astrophys. J. 877, 109 (2019).

    ADS  Google Scholar 

  60. 60.

    Fleury, B., Gudipati, M. S., Henderson, B. L. & Swain, M. Photochemistry in hot H2-dominated exoplanet atmospheres. Astrophys. J. 871, 158 (2019).

    ADS  Google Scholar 

  61. 61.

    Adams, D., Gao, P., de Pater, I. & Morley, C. V. Aggregate hazes in exoplanet atmospheres. Astrophys. J. 874, 61 (2019).

    ADS  Google Scholar 

  62. 62.

    Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004).

    ADS  Google Scholar 

  63. 63.

    Heays, A. N., Bosman, A. D. & van Dishoeck, E. F. Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys. 602, A105 (2017).

    Google Scholar 

  64. 64.

    Leinonen, J. Python code for calculating Mie scattering from single- and dual-layered spheres. GitHub (2016).

  65. 65.

    Fortney, J. J. et al. On the indirect detection of sodium in the atmosphere of the planetary companion to HD 209458. Astrophys. J. 589, 615–622 (2003).

    ADS  Google Scholar 

  66. 66.

    Fortney, J. J. et al. Transmission spectra of three-dimensional hot Jupiter model atmospheres. Astrophys. J. 709, 1396–1406 (2010).

    ADS  Google Scholar 

  67. 67.

    Robinson, T. D., Fortney, J. J. & Hubbard, W. B. Analytic scattering and refraction models for exoplanet transit spectra. Astrophys. J. 850, 128 (2017).

    ADS  Google Scholar 

  68. 68.

    Helling, C., Gourbin, P., Woitke, P. & Parmentier, V. Sparkling nights and very hot days on WASP-18b: the formation of clouds and the emergence of an ionosphere. Astron. Astrophys. 626, A133 (2019).

    ADS  Google Scholar 

  69. 69.

    Tinetti, G., Tennyson, J., Griffith, C. A. & Waldmann, I. Water in exoplanets. Phil. Trans. R. Soc. Lond. A 370, 2749–2764 (2012).

    ADS  Google Scholar 

Download references


We thank M. S. Marley for his valuable insights and G. Fu for enlightening discussions. P.G. acknowledges support from the NASA Postdoctoral Program and the 51 Pegasi b Fellowship from the Heising-Simons Foundation. G.K.H.L. acknowledges support from the University of Oxford and CSH Bern through the Bernoulli Fellowship, and funding from the European community through the ERC advanced grant exocondense (number 740963). X.Z. is supported by NASA Solar System Workings grant 80NSSC19K0791. H.R.W. acknowledges support from the Giacconi Prize Fellowship at STScI, operated by AURA.

Author information




P.G. conceived the research, performed the calculations and wrote the manuscript. D.P.T. provided necessary parameters for constructing the background atmospheres. G.K.H.L. supplied the equilibrium gas abundances for the various condensate species. J.J.F. and X.Z. imparted much needed guidance on the scope and structure of the manuscript. C.V.M. provided the refractive indices for most of the aerosol species considered here. H.R.W. contributed to manuscript writing and, along with K.B.S., provided guidance on data handling. D.K.P. provided insights on the aerosol microphysics model. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Peter Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–4.

Supplementary Software

Python code that computes nucleation rates; can be used to recreate Fig. 3 in the main text. Python 3 required.

Source data

Source Data Fig. 1

Text file showing the model AH values that we computed for clear and cloudy atmospheres across the temperature–gravity–metallicity parameter space that we considered.

Source Data Fig. 2

Excel spreadsheet showing (sheet 1) the fractional optical depth contributions of different aerosol species at the pressures probed by transmission spectroscopy in the J or H band for the g = 10 m s−2, 10× solar atmospheric metallicity case, (sheets 2–5) pressures probed by transmission spectroscopy in the 1.4 μm water band and J or H band that we computed for clear and cloudy atmospheres across the temperature–gravity–metallicity parameter space that we considered, and (sheet 6) mean aerosol particle radius at the pressures probed by transmission spectroscopy in the J of H band that we computed for cloudy atmospheres across the temperature–gravity–metallicity parameter space that we considered.

Source Data Fig. 4

Text file showing the predicted 10 μm silicate feature amplitudes in transmission that we computed for cloudy atmospheres across the temperature–gravity–metallicity parameter space that we considered. Data are in ascii format.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Thorngren, D.P., Lee, G.K.H. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat Astron (2020).

Download citation