Abstract
For more than six decades, the quest to understand the formation of hot (about 20,000−30,000 K) extreme horizontal branch (EHB) stars in Galactic globular clusters has remained one of the most elusive in stellar evolutionary theory. Here we report on two discoveries that challenge the idea of the stable luminosity of EHB stars. The first mode of EHB variability is periodic and cannot be ascribed to either binary evolution or pulsation. Instead, we attribute it here to the presence of magnetic spots: superficial chemical inhomogeneities whose projected rotation induces the variability. The second mode of EHB variability is aperiodic and manifests itself on timescales of years. In two cases, six-year-long light curves display superflare events that are several million times more energetic than solar analogues. We advocate a scenario in which the two EHB variability phenomena are different manifestations of diffuse, dynamo-generated, weak magnetic fields. Magnetism is therefore a key player driving the formation and evolution of EHB clusters stars and, likewise, operating in the Galactic field counterparts. Our conclusions bridge similar variability/magnetism phenomena in all radiative-enveloped hot-stars: young main-sequence stars, old EHBs and defunct white dwarfs.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All the raw data (and associated calibrations) used in this paper are available for download in the ESO Science archive under the respective programme ID (see Methods), at http://archive.eso.org. Processed data supporting the findings of this study are available from the corresponding author upon request.
Code availability
All the codes used in this study are available at: Phoebe, http://phoebe-project.org/; KSint, http://eduscisoft.com/KSINT/index.php; EXOFAST, http://astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml; ISIS, http://www2.iap.fr/users/alard/package.html; VARTOOL, https://www.astro.princeton.edu/~jhartman/vartools.html; SM, https://www.astro.princeton.edu/~rhl/sm/; ALAMBIC, https://esosoft.univie.ac.at/software/esomvm/; DAOPHOT, http://www.star.bris.ac.uk/~mbt/daophot/; IRAF, https://iraf-community.github.io/.
References
Brown, T. M. et al. The Hubble Space Telescope UV legacy survey of galactic globular clusters. VII. Implications from the nearly universal nature of horizontal branch discontinuities. Astrophys. J. 822, 44 (2016).
Castellani, M. & Castellani, V. Mass loss in globular cluster red giants: an evolutionary investigation. Astrophys. J. 407, 649 (1993).
Heber, U. Hot subluminous stars. Publ. Astron. Soc. Pacif. 128, 082001 (2016).
Moni Bidin, C. et al. The lack of close binaries among hot horizontal branch stars in NGC 6752. Astron. Astrophys. 451, 499–513 (2006).
Moni Bidin, C., Villanova, S., Piotto, G. & Momany, Y. A lack of close binaries among hot horizontal branch stars in globular clusters. II. NGC 2808. Astron. Astrophys. 528, A127 (2011).
Moehler, S. et al. The hot horizontal-branch stars in ω Centauri. Astron. Astrophys. 526, A136 (2011).
Latour, M., Randall, S. K., Calamida, A., Geier, S. & Moehler, S. SHOTGLAS. I. The ultimate spectroscopic census of extreme horizontal branch stars in ω Centauri. Astron. Astrophys. 618, A15 (2018).
Moni Bidin, C. et al. A hot horizontal branch star with a close K-type main-sequence companion. Astrophys. J. Lett. 812, L31 (2015).
Lucatello, S. et al. The incidence of binaries in globular cluster stellar populations. Astron. Astrophys. 584, A52 (2015).
Catelan, M. Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Publ. Astron. Soc. Pacif. 320, 261–309 (2009).
Gratton, R. et al. What is a globular cluster? An observational perspective. Astron. Astrophys. Rev. 27, 8 (2019).
Momany, Y. et al. A new feature along the extended blue horizontal branch of NGC 6752. Astrophys. J. Lett. 576, L65–L68 (2002).
Kilkenny, D., Koen, C., O’Donoghue, D. & Stobie, R. S. A new class of rapidly pulsating star—I. EC 14026-2647, the class prototype. Mon. Not. R. Astron. Soc. 285, 640–644 (1997).
Brown, T. M., Landsman, W. B., Randall, S. K., Sweigart, A. V. & Lanz, T. The discovery of pulsating hot subdwarfs in NGC 2808. Astrophys. J. Lett. 777, L22 (2013).
Randall, S. K. et al. Pulsating hot O subdwarfs in ω Centauri: mapping a unique instability strip on the extreme horizontal branch. Astron. Astrophys. 589, A1 (2016).
Green, E. M. et al. Discovery of a new class of pulsating stars: gravity-mode pulsators among subdwarf B stars. Astrophys. J. Lett. 583, L31–L34 (2003).
Samus’, N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N. & Pastukhova, E. N. General catalogue of variable stars: version GCVS 5.1. Astron. Rep. 61, 80–88 (2017).
Bernhard, K., Hümmerich, S., Otero, S. & Paunzen, E. A search for photometric variability in magnetic chemically peculiar stars using ASAS-3 data. Astron. Astrophys. 581, A138 (2015).
Mikulášek, Z. et al. An overview of the properties of a sample of newly-identified magnetic chemically peculiar stars in the Kepler field. In Physics of Magnetic Stars. ASP Conf. Ser. Vol. 518 (eds. Kudryavtsev, D. O. et al.) 117–124 (ASP, 2019).
Bagnulo, S., Landi Degl’Innocenti, M., Landolfi, M. & Mathys, G. A statistical analysis of the magnetic structure of CP stars. Astron. Astrophys. 394, 1023–1037 (2002).
Brown, T. M. et al. A universal transition in atmospheric diffusion for hot subdwarfs near 18,000 K. Astrophys. J. 851, 118 (2017).
Paunzen, E. et al. Search for stellar spots in field blue horizontal-branch stars. Astron. Astrophys. 622, A77 (2019).
Krtička, J. et al. The nature of light variations in magnetic hot stars. Contrib. Astron. Observatory Skalnate Pleso 48, 170–174 (2018).
Shavrina, A. V. et al. Spots structure and stratification of helium and silicon in the atmosphere of He-weak star HD 21699. Mon. Not. R. Astron. Soc. 401, 1882–1888 (2010).
Glagolevskij, Y. V. & Chuntonov, G. A. Composite model for the magnetic field of HD 21699. Astrophysics 50, 362–371 (2007).
Cassisi, S. & Salaris, M. Old Stellar Populations: How to Study the Fossil Record of Galaxy Formation (Wiley-VCH, 2013).
Cantiello, M. & Braithwaite, J. Envelope convection, surface magnetism, and spots in A and late B-type stars. Astrophys. J. 883, 106 (2019).
Cantiello, M. & Braithwaite, J. Magnetic spots on hot massive stars. Astron. Astrophys. 534, A140 (2011).
Moni Bidin, C. et al. Spectroscopy of horizontal branch stars in ω Centauri. Astron. Astrophys. 547, A109 (2012).
Schaefer, B. E. Astrophysics: startling superflares. Nature 485, 456–457 (2012).
Schaefer, B. E., King, J. R. & Deliyannis, C. P. Superflares on ordinary solar-type stars. Astrophys. J. 529, 1026–1030 (2000).
Schaefer, B. E. Flashes from normal stars. Astrophys. J. 337, 927 (1989).
Reed, M. D. et al. Analysis of the rich frequency spectrum of KIC 10670103 revealing the most slowly rotating subdwarf B star in the Kepler field. Mon. Not. R. Astron. Soc. 440, 3809–3824 (2014).
Balona, L. A. Flare stars across the H-R diagram. Mon. Not. R. Astron. Soc. 447, 2714–2725 (2015).
Fontaine, G., Brassard, P., Charpinet, S. & Chayer, P. The need for radiative levitation for understanding the properties of pulsating sdB stars. Mem. Soc. Astron. Ital. 77, 49 (2006).
Miller Bertolami, M. M., Battich, T., Còrsico, A. H., Christensen-Dalsgaard, J. & Althaus, L. G. Asteroseismic signatures of the helium core flash. Nat. Astron. 4, 67–71 (2020).
Landstreet, J. D., Bagnulo, S., Fossati, L., Jordan, S. & O’Toole, S. J. The magnetic fields of hot subdwarf stars. Astron. Astrophys. 541, A100 (2012).
Bagnulo, S., Fossati, L., Landstreet, J. D. & Izzo, C. The FORS1 catalogue of stellar magnetic field measurements. Astron. Astrophys. 583, A115 (2015).
Somers, G., Cao, L. & Pinsonneault, M. H. The SPOTS models: a grid of theoretical stellar evolution tracks and isochrones for testing the effects of starspots on structure and colors. Astrophys. J. 891, 29 (2020).
van Saders, J. L. et al. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529, 181–184 (2016).
Balona, L. A. Evidence for spots on hot stars suggests major revision of stellar physics. Mon. Not. R. Astron. Soc. 490, 2112–2116 (2019).
Balona, L. A. et al. Rotational modulation in TESS B stars. Mon. Not. R. Astron. Soc. 485, 3457–3469 (2019).
Dupuis, J., Chayer, P., Vennes, S., Christian, D. J. & Kruk, J. W. Adding more mysteries to the DA white dwarf GD 394. Astrophys. J. 537, 977–992 (2000).
Kilic, M. et al. A dark spot on a massive white dwarf. Astrophys. J. Lett 814, L31 (2015).
Koester, D. & Chanmugam, G. Review: physics of white dwarf stars. Rep. Prog. Phys. 53, 837–915 (1990).
Reding, J. S., Hermes, J. J. & Clemens, J. C. An exploration of spotted white dwarfs from K2. In Proc. 21st Eur. Workshop on White Dwarfs 1–6 (Univ. Texas Libraries, 2018).
Mestel, L. The magnetic field of a contracting gas cloud. I. Strict flux-freezing. Mon. Not. R. Astron. Soc. 133, 265 (1966).
Ferrario, L., Wickramasinghe, D. T. & Kawka, A. Magnetic fields in isolated and interacting white dwarfs. Adv. Space Res. https://doi.org/10.1016/j.asr.2019.11.012 (2020).
Le Fèvre, O. et al. Commissioning and performances of the VLT-VIMOS instrument. Proc. SPIE 4841, 1670–1681 (2003).
Kuijken, K. OmegaCAM: ESO’s newest imager. Messenger 146, 8–11 (2011).
Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191 (1987).
Alard, C. & Lupton, R. H. A method for optimal image subtraction. Astrophys. J. 503, 325–331 (1998).
Montalto, M. et al. A new search for planet transits in NGC 6791. Astron. Astrophys. 470, 1137–1156 (2007).
Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935 (2010).
Hartman, J. D. & Bakos, G. Á. VARTOOLS: a program for analyzing astronomical time-series data. Astron. Comput. 17, 1–72 (2016).
Schwarzenberg-Czerny, A. Fast and statistically optimal period search in uneven sampled observations. Astrophys. J. Lett. 460, L107 (1996).
Schwarzenberg-Czerny, A. & Beaulieu, J.-P. Efficient analysis in planet transit surveys. Mon. Not. R. Astron. Soc. 365, 165–170 (2006).
Kaluzny, J. et al. Cluster AgeS Experiment catalog of variable stars in the globular cluster ω Centauri. Astron. Astrophys. 424, 1101–1110 (2004).
Kaluzny, J. & Thompson, I. B. Variable stars in the globular cluster NGC 6752. Acta Astron. 59, 273–289 (2009).
Rozyczka, M. et al. The Cluster AgeS Experiment (CASE). Variable stars in the field of the globular cluster M22. Acta Astron. 67, 203–224 (2017).
Rozyczka, M. et al. The Cluster AgeS Experiment (CASE). Variable stars in the field of the globular cluster M10. Preprint at https://arxiv.org/abs/2001.01529 (2020).
Milone, A. P. et al. The Hubble Space Telescope UV legacy survey of galactic globular clusters. III. A quintuple stellar population in NGC 2808. Astrophys. J. 808, 51 (2015).
Ferraro, F. R., Paltrinieri, B., Fusi Pecci, F., Rood, R. T. & Dorman, B. Multimodal distributions along the horizontal branch. Astrophys. J. 500, 311–319 (1998).
Bedin, L. R. et al. The anomalous Galactic globular cluster NGC 2808. Mosaic wide-field multi-band photometry. Astron. Astrophys. 363, 159–173 (2000).
Pietrinferni, A., Cassisi, S., Salaris, M. & Hidalgo, S. The BaSTI stellar evolution database: models for extremely metal-poor and super-metal-rich stellar populations. Astron. Astrophys. 558, A46 (2013).
Nardiello, D. et al. The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVII. Public catalogue release. Mon. Not. R. Astron. Soc. 481, 3382–3393 (2018).
Cool, A. M. et al. HST/ACS imaging of omega Centauri: optical counterparts of Chandra X-ray sources. Astrophys. J. 763, 126 (2013).
Moni Bidin, C., Moehler, S., Piotto, G., Momany, Y. & Recio-Blanco, A. Spectroscopy of horizontal branch stars in NGC 6752. Anomalous results on atmospheric parameters and masses. Astron. Astrophys. 474, 505–514 (2007).
D’Orazi, V. et al. Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362. Mon. Not. R. Astron. Soc. 449, 4038–4047 (2015).
Coelho, P. R. T. A new library of theoretical stellar spectra with scaled-solar and α-enhanced mixtures. Mon. Not. R. Astron. Soc. 440, 1027–1043 (2014).
Jones, D. & Boffin, H. M. J. Binary stars as the key to understanding planetary nebulae. Nat. Astron. 1, 0117 (2017).
Prša, A. et al. Physics of eclipsing binaries. II. Toward the increased model fidelity. Astrophys. J. Suppl. 227, 29 (2016).
Bertelli, G., Girardi, L., Marigo, P. & Nasi, E. Scaled solar tracks and isochrones in a large region of the Z-Y plane. I. From the ZAMS to the TP-AGB end for 0.15–2.5 M⊙ stars. Astron. Astrophys. 484, 815–830 (2008).
Hillwig, T. C. et al. Observational confirmation of a link between common envelope binary interaction and planetary nebula shaping. Astrophys. J. 832, 125 (2016).
Gilliland, R. L. et al. A lack of planets in 47 tucanae from a Hubble Space Telescope search. Astrophys. J. Lett. 545, L47–L51 (2000).
Nascimbeni, V., Bedin, L. R., Piotto, G., De Marchi, F. & Rich, R. M. An HST search for planets in the lower main sequence of the globular cluster NGC 6397. Astron. Astrophys. 541, A144 (2012).
Wallace, J. J., Hartman, J. D. & Bakos, G. Á. A search for transiting planets in the globular cluster M4 with K2: candidates and occurrence limits. Astron. J. 159, 106 (2020).
Santander-Garca, M. et al. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. Nature 519, 63–65 (2015).
Vos, J., Németh, P., Vučković, M., Østensen, R. & Parsons, S. Composite hot subdwarf binaries—I. The spectroscopically confirmed sdB sample. Mon. Not. R. Astron. Soc. 473, 693–709 (2018).
Grundahl, F., Catelan, M., Landsman, W. B., Stetson, P. B. & Andersen, M. I. Hot horizontal-branch stars: the ubiquitous nature of the “jump” in Strömgren u, low gravities, and the role of radiative levitation of metals. Astrophys. J. 524, 242–261 (1999).
Pietrukowicz, P. et al. Blue large-amplitude pulsators as a new class of variable stars. Nat. Astron. 1, 0166 (2017).
Acknowledgements
We acknowledge discussions with S. Bagnulo, A. Bressan, A. Bianchini, A. Renzini and P. Ochner, and we thank M. Dima for help in producing movies of the stellar spots. D.J. acknowledges support from the State Research Agency (AEI) of the Spanish Ministry of Science, Innovation and Universities (MCIU) and the European Regional Development Fund (FEDER) under grant AYA2017-83383-P. D.J. also acknowledges support under grant P/308614 financed by funds transferred from the Spanish Ministry of Science, Innovation and Universities, charged to the General State Budgets and with funds transferred from the General Budgets of the Autonomous Community of the Canary Islands by the Ministry of Economy, Industry, Trade and Knowledge.
Author information
Authors and Affiliations
Contributions
Y.M. and S.Z. designed the study and coordinated the activity. Y.M., S.Z., M.M., H.M.J.B., D.J., M.G., I.S., L.M., C.M.B., V.D’O. and H.L. reduced and analysed the data. M.M. and S.Z. developed the spot modelling programme and related simulations. S.C., L.G. and D.J. provided theoretical modelling. G.P., A.P.M., P.B.S., Y.B. and E.M. contributed to the assembly of the photometric catalogues. Y.M. wrote the paper. S.Z., D.J., H.M.J.B., I.S., S.C., L.G. and H.L. contributed to the discussion and presentation of the paper. All authors contributed to the discussion of the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Estimating the EHB variable frequency.
Upper-left panel displays our NGC2808 VIMOS diagram highlighting all identified variables, the box delimits the EHB sample used to normalize the EHB variable stars frequency, and a ZAHB model is used to confirm the EHB variable stars temperature range (~17,500–24,500 K). The two EHB variable stars with open orange symbols are confirmed EHB stars, as identified in the higher resolution HST catalogue (upper-right panel). Lower panels show the position of all EHB variable stars identified in HST diagrams.
Extended Data Fig. 2 No binarity signature detected in the NGC2808 vEHB-1 variable.
Upper panel displays the phased Hα radial velocity curve of a comparison RR Lyrae star proving a successful detection of velocity variations in the data-set. The lower panel displays the velocity curve of our photometric variable vEHB-1 present in the same data-set. The error bars display the 1-σ error (~3.5 km/s) estimated at the vEHB-1 luminosity. No substantial velocity variations for vEHB-1 are observed. For clarity, the NGC2808 average radial velocity has been subtracted.
Extended Data Fig. 3 No binarity signature detected in the NGC6752 vEHB-1/2 variables.
Upper panel displays the phased Hγ,δ radial velocity curve of a comparison SX Phoenicis star59 proving a successful detection of velocity variations in the data-set. The lower panels display the velocity curves of the 2 EHB photometric variables (and the candidate EHB photometric59 variable vEHB-4/V17) present in the same data-set. The error bars display the 1-σ error (~3.0 km/s estimated at the vEHB-1 luminosity. No substantial velocity variations for the vEHB-1/2 are observed. For clarity, the NGC6752 average radial velocity has been subtracted.
Extended Data Fig. 4 The long-term stable variability of vEHB-1 in NGC6752.
Bottom plot shows all the uSDSS OmegaCAM measurements of vEHB-1 collected over a six-year period. The upper plots show the phased light curves sub-divided over six years. A typical 1-σ photometric error bar is plotted. The solid light-blue line is the best fitting model (Period ≃ 19.5 days) calculated using the six years’ measurements.
Extended Data Fig. 5 The aperiodic long-term Padua variables in NGC6752.
Light blue squares display the six-year archival OmegaCAM@VST data, while black squares display those originating from our three-year monitoring. A typical 1-σ photometric error bar is plotted. The Padua-2 mini-burst is incomplete but discernible.
Extended Data Fig. 6 Rotational variability and superflare event in a Galactic field sdB star.
Upper panel displays the folded TESS light curve of a Galactic field sdB star showing α2CVn spot-induced variability. Filled squares are the 2.5-σ clipped median values every 300 data points, while the error bars reflect the 1-σ RMS of the clipped flux values. Lower panel proves the occurrence of an energetic (~1035 erg) superflare event in this field sdB star. Both phenomena necessitate the presence of magnetic fields.
Supplementary information
Supplementary Information
Supplementary Figures 1-7, Supplementary Discussion, and Supplementary Table 1.
Rights and permissions
About this article
Cite this article
Momany, Y., Zaggia, S., Montalto, M. et al. A plague of magnetic spots among the hot stars of globular clusters. Nat Astron 4, 1092–1101 (2020). https://doi.org/10.1038/s41550-020-1113-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-1113-4
This article is cited by
-
Understanding structure in line-driven stellar winds using ultraviolet spectropolarimetry in the time domain
Astrophysics and Space Science (2022)