Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Observations of luminous infrared galaxies with the Spitzer Space Telescope

Abstract

Luminous and ultraluminous infrared galaxies have been an active area of galaxy research since their discovery more than three decades ago. With its vast increase in sensitivity in the infrared, Spitzer played a major role in exploring these galaxies in the local Universe, and at high redshifts. In this Review, we highlight some of the discoveries made with the Infrared Spectrograph on Spitzer, through observations of luminous and ultraluminous infrared galaxies to cosmic noon. These include measuring the role of starbursts and actively accreting supermassive black holes as power sources, finding evidence for energetic feedback on the atomic and molecular interstellar gas and dust and identifying the physical properties of luminous infrared galaxies on and off the galaxy star-forming main sequence. Finally, we briefly discuss how future infrared telescopes will build upon the discoveries of Spitzer to better understand the evolution of this important population since the epoch of reionization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multicomponent fit to the infrared spectral energy distribution (SED) of the nearest ULIRG, Arp 220.
Fig. 2: Hubble Space Telescope images of three nearby ULIRGs.
Fig. 3: Spitzer/IRS spectra of five local ULIRGs.
Fig. 4: Obscured fast outflows in local ULIRGs.
Fig. 5: Composite Spitzer/IRS specrum of z ≈ 2 SMGs.
Fig. 6: IRS spectrum of the z = 4.055 SMG, GN20.

Similar content being viewed by others

References

  1. Soifer, B. T., Houck, J. R. & Neuebauer, G. The IRAS Bright Galaxy Sample. II. The sample and luminosity function. Astrophys. J. 320, 238–257 (1987).

    Article  ADS  Google Scholar 

  2. Houck, J. R. et al. Unidentified point sources in the IRAS minisurvey. Astrophys. J. Lett 278, L63–L66 (1984).

    Article  ADS  Google Scholar 

  3. Soifer, B. T. et al. The remarkable infrared galaxy Arp 220 = IC 4553. Astrophys. J. Lett 283, L1–L4 (1984).

    Article  ADS  Google Scholar 

  4. Gehrz, R. D., Sramek, R. A. & Weedman, D. W. Star bursts and the extraordinary galaxy NGC 3690. Astrophys. J. 267, 551–562 (1983).

    Article  ADS  Google Scholar 

  5. Sanders, D. B. & Mirabel. I. F. Luminous Infrared Galaxies. Ann. Rev. Astron. Astrophys 34, 749–792 (1996).

    Article  ADS  Google Scholar 

  6. Soifer, B. T. et al. The IRAS Bright Galaxy Sample. II. The sample and luminosity function. Astrophys. J. 320, 238–257 (1987).

    Article  ADS  Google Scholar 

  7. Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A. & Soifer, B. T. The IRAS Revised Bright Galaxy Sample. Astron. J. 126, 1607–1664 (2003).

    Article  ADS  Google Scholar 

  8. Schmidt, M. & Green, R. F. Quasar evolution derived from the Palomar Bright Quasar Survey and other complete quasar surveys. Astrophys. J. 269, 352–374 (1983).

    Article  ADS  Google Scholar 

  9. Arp, H. Atlas of Peculiar Galaxies. Astrophys. J. Suppl. 14, 1–20 (1966).

    Article  ADS  Google Scholar 

  10. Armus, L., Heckman, T. M. & Miley, G. K. Multi-color optical imaging of powerful far-infrared galaxies: more evidence for a link between galaxy mergers and far-infrared emission. Astron. J. 94, 831–846 (1987).

    Article  ADS  Google Scholar 

  11. Sanders, D. B. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74–91 (1988).

    Article  ADS  Google Scholar 

  12. Mihos, J. C. & Hernquist, L. Gasdynamics and starbursts in major mergers. Astrophys. J. 464, 641–663 (1996).

    Article  ADS  Google Scholar 

  13. Armus, L., Heckman, T. M. & Miley, G. K. Long-slit optical spectroscopy of powerful far-infrared galaxies: the nature of the nuclear energy source. Astrophys. J. 347, 727–742 (1989).

    Article  ADS  Google Scholar 

  14. O’Dell, C. R. The creation of the Hubble Space Telescope. Experiment. Astron 25, 261–272 (2009).

    Article  ADS  Google Scholar 

  15. Carico, D. P., Sanders, D. B., Soifer, B. T., Matthews, K. & Neugebauer, G. The IRAS bright galaxy sample. V. multibeam photometry of galaxies with L(IR) > 10**11 Lsun. Astron. J. 100, 70–83 (1990).

    Article  ADS  Google Scholar 

  16. Mazzarella, J. et al. Near-infrared images and color maps of Arp 220. Astron. J. 103, 413–421 (1992).

    Article  ADS  Google Scholar 

  17. Scoville, N. Z. et al. NICMOS imaging of infrared-luminous galaxies. Astron. J. 119, 991–1061 (2000).

    Article  ADS  Google Scholar 

  18. Armus, L., Neugebauer, G., Soifer, B. T. & Matthews, K. Near-infrared spectra of Arp 220: spatially resolved CO absorption in the inner kiloparsec. Astron. J. 110, 2610–2621 (1995).

    Article  ADS  Google Scholar 

  19. Armus, L., Shupe, D. L., Matthews, K., Soifer, B. T. & Neugebauer, G. Near-infrared [FeII] and Pβ imaging and spectroscopy of Arp 220. Astrophys. J. 440, 200–209 (1995).

    Article  ADS  Google Scholar 

  20. Veilleux, S., Kim, D. C. & Sanders, D. B. A near-infrared search for hidden broad-line regions in ultraluminous infrared galaxies. Astrophys. J. 484, 92–107 (1997).

    Article  ADS  Google Scholar 

  21. Murphy, T. W., Soifer, B. T., Matthews, K., Kiger, J. R. & Armus, L. Near-infrared spectra of ultraluminous infrared galaxies. Astrophys. J. Lett 525, L85–L88 (1999).

    Article  ADS  Google Scholar 

  22. Murphy, T. W., Soifer, B. T., Matthews, K., Armus, L. & Kiger, J. R. K-band spectroscopy of ultraluminous infrared galaxies: The 2 Jy sample. Astron. J. 121, 97–127 (2001).

    Article  ADS  Google Scholar 

  23. Moorwood, A. F. M. 3.28 μm feature and continuum emission in galaxy nuclei. Astron. Astrophys. 166, 4–12 (1986).

    ADS  Google Scholar 

  24. Imanishi, M. & Dudley, C. C. Energy diagnoses of nine infrared luminous galaxies based on 3–4 micron spectra. Astrophys. J. 545, 701–711 (2000).

    Article  ADS  Google Scholar 

  25. Imanishi, M., Dudley, C. C. & Maloney, P. R. Infrared 3–4 μm spectroscopic invesitgations of a large sample of nearby ultraluminous infrared galaxies. Astrophys. J. 637, 114–137 (2006).

    Article  ADS  Google Scholar 

  26. Murakami, H. et al. The Infrared Astronomical mission AKARI. Publ. Astron. Soc. Pac. 59, 369–381 (2007).

    Article  Google Scholar 

  27. Imanishi, M., Nakagawa, T., Shirahata, M., Ohyama, Y., Onaka, T. & AKARI, I. R. C. infrared 2.5–5 μm spectroscopy of a large sample of luminous infrared galaxies. Astrophys. J. 721, 1233–1261 (2010).

    Article  ADS  Google Scholar 

  28. Inami, H. et al. The AKARI 2.5–5 micron spectra of luminous infrared galaxies in the local Universe. Astron. Astrophys. 617, 130–156 (2018).

    Article  Google Scholar 

  29. Baba, S., Nakagawa, T., Isobe, I. & Shirahata, M. The near-infrared CO absorption band as a probe to the inner AGN-obscuring material. Astrophys. J. 852, 83–99 (2018).

    Article  ADS  Google Scholar 

  30. Scoville, N. Z. et al. ALMA resolves the nuclear disks of Arp 220. Astrophys. J. 836, 66–83 (2017).

    Article  ADS  Google Scholar 

  31. Smith, H. E., Lonsdale, C. J., Lonsdale, C. J. & Diamond, P. J. A starburst revealed – luminous radio supernovae in the nuclei of Arp 220. Astrophys. J. Lett 493, L17–L21 (1998).

    Article  ADS  Google Scholar 

  32. Aitken, D. K. & Roche, P. F. 8–13 micron spectrophotometry of galaxies – IV. Six more Seyferts and 3C 345. Mon. Not. R. Astron. Soc 213, 777–788 (1985).

    Article  ADS  Google Scholar 

  33. Roche, P. F., Aitken, D. K., Smith, C. H. & Ward, M. J. An atlas of mid-infrared spectra of galaxy nuclei. Mon. Not. R. Astron. Soc 248, 606–629 (1991).

    Article  ADS  Google Scholar 

  34. Kessler, M. F. et al. The Infrared Space Observatory (ISO) mission. Astron. Astrophys. 315, L27–L31 (1996).

    ADS  Google Scholar 

  35. Mirabel, I. F. et al. The dark side of star formation in the Antennae galaxies. Astron. Astrophys. 333, L1–L4 (1998).

    ADS  Google Scholar 

  36. Lutz, D. et al. What powers luminous infrared galaxies. Astron. Astrophys. 315, L137–L140 (1996).

    ADS  Google Scholar 

  37. Genzel, R. et al. What powers ultraluminous IRAS galaxies? Astrophys. J. 498, 579–605 (1998).

    Article  ADS  Google Scholar 

  38. Clavel, J. et al. 2.5–11 micron spectroscopy and imaging of AGNs. Astron. Astrophys. 357, 839–849 (2000).

    ADS  Google Scholar 

  39. Laurent, O. et al. Mid-infrared diagnostics to distinguish ANGs from starbursts. Astron. Astrophys. 359, 887–899 (2000).

    ADS  Google Scholar 

  40. Sturm, E. et al. Mid-infrared line diagnostics of active galaxies. Astron. Astrophys. 393, 821–841 (2002).

    Article  ADS  Google Scholar 

  41. Peeters, E., Spoon, H. W. W. & Tielens, A. G. G. M. Polycyclic Aromatic Hydrocarbons as a tracer of star formation? Astrophys. J. 613, 986–1003 (2004).

    Article  ADS  Google Scholar 

  42. Fazio, G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004).

    Article  ADS  Google Scholar 

  43. Rieke, G. H. et al. The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. 154, 25–29 (2004).

    Article  ADS  Google Scholar 

  44. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 18–24 (2004).

    Article  ADS  Google Scholar 

  45. Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. Suppl. 154, 1–9 (2004).

    Article  ADS  Google Scholar 

  46. Rieke, G. H. The Last of the Great Observatories: Spitzer and the Era of Faster, Better, Cheaper at NASA (Univ. Arizona Press, 2006).

  47. Werner, M. & Eisenhardt, P. R. M. More Things in the Heavens: How Infrared Astronomy is Expanding Our View of the Universe (Princeton Univ. Press, 2019).

  48. Brandl, B. et al. Spitzer Infrared Spectrograph spectroscopy of the prototypical starburst galaxy NGC 7714. Astrophys. J. Suppl. 154, 188–192 (2004).

    Article  ADS  Google Scholar 

  49. Devost, D. et al. Spitzer Infrared Spectrograph (IRS) mapping of the inner kiloparsec of NGC 253: Spatial distrobution of the [NeIII], polycyclic aromatic hydrocarbon 11.3. micron, and H2 (0–0) S(1) lines and a gradient in the [NeIII]/[NeII] line ratio. Astrophys. J. Suppl. 154, 242–247 (2004).

    Google Scholar 

  50. Spoon, H. W. W. et al. Fire and Ice: Spitzer Infrared Spectrograph (IRS) mid-infrared spectroscopy of IRAS F00183–7111. Astrophys J. Suppl. 154, 184–187 (2004).

    Article  ADS  Google Scholar 

  51. Armus, L. et al. Observations of ultraluminous infrared galaxies with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope: early results on Markarian 1014, Markarian 463 and UGC 5101. Astrophys. J. Suppl. 154, 178–183 (2004).

    Article  ADS  Google Scholar 

  52. Armus, L. et al. Observations of ultraluminous infrared galaxies with the Infrared Spectrograph on the Spitzer Space Telescope II. The IRAS Bright Galaxy Sample. Astrophys. J. 656, 148–167 (2007).

    Article  ADS  Google Scholar 

  53. Armus, L. et al. Detection of the buried active galactic nucleus in NGC 6240 with the Infrared Spectrograph on the Spitzer Space Telescope. Astrophys. J. 640, 204–210 (2006).

    Article  ADS  Google Scholar 

  54. Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat. Astron 4, 339–351 (2020).

    Article  ADS  Google Scholar 

  55. Leger, A. & Puget, J. L. Identification of the “unidentified IR emission features of interstellar dust? Astron. & Astrophys 137, L5–L8 (1984).

    ADS  Google Scholar 

  56. Sellgren, K. The near-infrared continuum emission of visual reflection nebulae. Astrophys. J. 277, 623–633 (1984).

    Article  ADS  Google Scholar 

  57. Desert, F.-X., Boulanger, F. & Puget, J. L. Interstellar dust models for extinction and emission. Astron. Astrophys. 237, 215–236 (1990).

    ADS  Google Scholar 

  58. Brandl, B. et al. The mid-infrared properties of starburst galaxies from Spitzer-IRS spectroscopy. Astrophys. J. 653, 1129–1144 (2006).

    Article  ADS  Google Scholar 

  59. Smith, J. D. T. et al. The mid-infrared spectrum of star-forming galaxies: Global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007).

    Article  ADS  Google Scholar 

  60. Draine, B. T. & Li, A. Infrared emission from interstellar dust. I. Stochastic heating of small grains. Astrophys. J. 551, 807–824 (2001).

    Article  ADS  Google Scholar 

  61. Farrah, D. et al. High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies. Astrophys. J. 667, 149–169 (2007).

    Article  ADS  Google Scholar 

  62. Imanishi, M. et al. A Spitzer IRS low-resolution spectroscopic search for buried AGNs in nearby ultraluminous infrared galaxies: A constraint on geometry between energy sources and dust. Astrophys. J. Suppl. 171, 72–100 (2007).

    Article  ADS  Google Scholar 

  63. Nardini, E. et al. Spectral decomposition of starbursts and active galactic nuclei in the 5–8 μm Spitzer-IRS spectra of local ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc 385, L130–L134 (2008).

    Article  ADS  Google Scholar 

  64. Desai, V. et al. PAH emission from ultraluminous infrared galaxies. Astrophys. J. 669, 810–820 (2007).

    Article  ADS  Google Scholar 

  65. Veilleux, S. et al. Spitzer Quasar and ULIRG Evolutionary Study (QUEST). IV. Comparison of 1 Jy ultraluminous infrared galaxies with Palomar-Green quasars. Astrophys. J. Suppl. 182, 628–666 (2009).

    Article  ADS  Google Scholar 

  66. Spoon, H. W. W. et al. Mid-infrared galaxy classification based on silicate obscuration and PAH equivalent width. Astrophys. J. Lett. 654, L49–L52 (2007).

    Article  ADS  Google Scholar 

  67. Marshall, J. A. et al. Decomposing dusty galaxies. I. Multicomponent spectral energy distribution fitting. Astrophys. J. 670, 129–155 (2007).

    Article  ADS  Google Scholar 

  68. Marshall, J. A., Elitzur, M., Armus, L., Diaz-Santos, T. & Charmandaris, V. The nature of deeply buried ultraluminous infrared galaxies: A unified model for highly obscured dusty galaxy emission. Astrophys. J. 858, 59–78 (2018).

    Article  ADS  Google Scholar 

  69. Higdon, S. J. et al. A Spitzer Space Telescope Infrared Spectrograph survey of warm molecular hydrogen in ultraluminous infared galaxies. Astrophys. J. 648, 323–339 (2006).

    Article  ADS  Google Scholar 

  70. Zakamska, N. L. H2 emission arises outside photodissociation regions in ultraluminous infrared galaxies. Nature 465, 60–63 (2010).

    Article  ADS  Google Scholar 

  71. Sanders, D. B. et al. Molecular gas in high-luminosity IRAS galaxies. Astrophys. J. Lett 305, L45–L49 (1986).

    Article  ADS  Google Scholar 

  72. Roche, P. F. & Aitken, D. K. An investigation of the interstellar extinction – I. towards dusty WC Wolf-Rayet stars. Mon. Not. R. Astron. Soc 208, 481–492 (1984).

    ADS  Google Scholar 

  73. Levenson, N. A. et al. Deep mid-infrared silicate absorption as a diagnostic of obscuring geometry toward galactic nuclei. Astrophys. J. Lett. 654, L45–L48 (2007).

    Article  ADS  Google Scholar 

  74. Sirocky, M. M., Levenson, N. A., Elitzur, M., Spoon, H. W. W. & Armus, L. Silicates in ultraluminous infrared galaxies. Astrophys. J. 678, 729–743 (2008).

    Article  ADS  Google Scholar 

  75. Lahuis, F. et al. Infrared molecular starburst fingerprints in deeply obscured (ultra)luminous infrared galaxy nuclei. Astrophys. J. 659, 296–304 (2007).

    Article  ADS  Google Scholar 

  76. Spoon, H. W. W. et al. The detection of crystalline silicates in ultraluminous infrared galaxies. Astrophys. J. 638, 759–765 (2006).

    Article  ADS  Google Scholar 

  77. Bringa, E. M. et al. Energetic processing of interstellar silicate grains by cosmic rays. Astrophys. J. 662, 372–378 (2007).

    Article  ADS  Google Scholar 

  78. Spoon, H. W. W. et al. High-velocity Neon line emission from the ULIRG IRAS F00183–7111: Revealing the optically obscured base of a nuclear outflow. Astrophys. J. 693, 1223–1235 (2009).

    Article  ADS  Google Scholar 

  79. Spoon, H. W. W. & Holt, J. Discovery of strongly blueshifted mid-infrared [NeIII] and [NeV] emission in ULIRGs. Astrophys. J. Lett. 702, L42–L46 (2009).

    Article  ADS  Google Scholar 

  80. Stierwalt, S. et al. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the GOALS sample. Astrophys. J. 790, 124–144 (2014).

    Article  ADS  Google Scholar 

  81. Hill, M. J. & Zakamska, N. L. Warm molecular hydrogen in outflows from ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc 439, 2701–2716 (2014).

    Article  ADS  Google Scholar 

  82. Heckman, T. M., Armus, L. & Miley, G. K. Evidence for large-scale winds from starburst galaxies. II. An optical investigation of powerful far-infrared galaxies. Astron. J. 93, 276–283 (1987).

    Article  ADS  Google Scholar 

  83. Heckman, T. M., Armus, L. & Miley, G. K. On the nature and implications of starburst-driven galactic superwinds.1990. Astrophys. J. Suppl. 74, 833–868 (1990).

  84. Appleton, P. N. et al. Powerful high-velocity dispersion molecular hydrogen associated with an intergalactic shock wave in Stephans Quintet. Astrophys. J. Lett. 639, L51–L54 (2006).

    Article  ADS  Google Scholar 

  85. Roussel, H. et al. Warm molecular hydrogen in the Spitzer SINGS galaxy sample. Astrophys. J. 669, 959–981 (2007).

    Article  ADS  Google Scholar 

  86. Petric, A. O. et al. Warm molecular hydrogen in nearby, luminous infrared galaxies. Astron. J. 156, 295–318 (2018).

    Article  ADS  Google Scholar 

  87. Rupke, D. S. & Veilleux, S. Keck high-resolution spectroscopy of outflows in infrared-luminous galaxies. Astrophys. J. Lett. 631, L37–L40 (2005).

    Article  ADS  Google Scholar 

  88. Martin, C. L. Mapping large-scale gaseous outflows in ultraluminous infrared galaxies with Keck II ESI spectra: Variations in outflow velocity with galactic mass. Astrophys. J. 621, 227–245 (2005).

    Article  ADS  Google Scholar 

  89. Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Ann. Rev. Astron. Astrophys 43, 769–826 (2005).

    Article  ADS  Google Scholar 

  90. Soto, K. T., Martin, C. L., Prescott, M. K. M. & Armus, L. The emission-line spectra of major mergers: Evidence for shocked outflows. Astrophys. J. 757, 86–96 (2012).

  91. Rupke, D. S. & Veilleux, S. Integral field spectroscopy of massive, kiloparsec-scale outflows in the infrared-luminous QSO Mrk 231. Astrophys. J. Lett. 729, L27–L33 (2011).

  92. Rupke, D. S. & Veilleux, S. Breaking the obscuring screen: A resolved molecular outflow in a buried QSO. Astrophys. J. Lett. 775, L15–L20 (2013).

    Article  ADS  Google Scholar 

  93. Vivian, U. et al. Keck OSIRIS AO LIRG Analysis (KOALA): Feedback in the nucleiof luminous infrared galaxies. Astrophys. J. 871, 166–188 (2019).

    Article  ADS  Google Scholar 

  94. Feruglio, C. et al. Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 518, L155–L158 (2010).

    Article  ADS  Google Scholar 

  95. Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, 21–45 (2014).

    Article  Google Scholar 

  96. Gowardhan, A. et al. The dual role of starbursts and active galactic nuclei in driving extreme molecular outflows. Astrophys. J. 859, 35–57 (2018).

    Article  ADS  Google Scholar 

  97. Fischer, J. et al. Herschel-PACS spectroscopic diagnostics of local ULIRGs: Conditions and kinematics in Markarian 231. Astron. Astrophys. 518, L41–L44 (2010).

    Article  ADS  Google Scholar 

  98. Sturm, E. et al. Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS. Astrophys. J. Lett. 733, L16–L20 (2011).

    Article  ADS  Google Scholar 

  99. Spoon, H. W. W. et al. Diagnostics of AGN-drive molecular outflows in ULIRGs from Herschel-PACS observations of OH at 119 μm. Astrophys. J. 775, 127–146 (2013).

    Article  ADS  Google Scholar 

  100. Veilleux, S. et al. Fast molecular outflows in luminous galaxy mergers: evidence for quasar feedback from Herschel. Astrophys. J. 776, 27–47 (2013).

    Article  ADS  Google Scholar 

  101. Gonzalez-Alfonso, E. et al. The Mrk 231 molecular outflow as seen in OH. Astron. Astrophys. 561, 27–45 (2014).

    Article  Google Scholar 

  102. Gonzalez-Alfonso, E. et al. Molecular outflows in local ULIRGS: Energetics from multi-transition OH analysis. Astrophys. J. 836, 11–51 (2017).

    Article  ADS  Google Scholar 

  103. Pilbratt, G. L. et al. Herschel Space Observatory: An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1–L6 (2010).

    Article  ADS  Google Scholar 

  104. Strickland, D. K., Heckman, T. M., Colbert, E. J. M., Hoopes, C. G. & Weaver, K. A. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies. II. Quantifying suprnova feedback. Astrophys. J. 606, 829–852 (2004).

    Article  ADS  Google Scholar 

  105. Hoopes, C. G., Walterbos, R. A. M. & Rand, R. J. Diffuse ionized gas in edge-on spiral galaxies: Extraplana and outer disk Hα emission. Astrophys. J. 522, 669–685 (1999).

    Article  ADS  Google Scholar 

  106. Beirao, P. et al. Spatially resolved Spitzer-IRS spectral maps of the superwind in M82. Mon Not. R. Astron. Soc. 451, 2640–2655 (2015).

    Article  ADS  Google Scholar 

  107. Muller-Sanchez, F. et al. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The nuclear K-band properties of nearby AGN. Astrophys. J. 858, 48–66 (2018).

    Article  ADS  Google Scholar 

  108. Vayner, A. et al. Galactic-scale feedback observed in the 3C 298 quasar host galaxy. Astrophys. J. 851, 126–143 (2017).

    Article  ADS  Google Scholar 

  109. Erb, D. K. Feedback in low-mass galaxies in the early Universe. Nature 523, 169–176 (2015).

    Article  ADS  Google Scholar 

  110. Schechter, P. An analytic expression for the luminosity function for galaxies. Astrophys. J. 203, 297–306 (1976).

    Article  ADS  Google Scholar 

  111. Haan, S. et al. The nuclear structure in nearby luminous infrared galaxies: Hubble Space Telescope NICMOS imaging of the GOALS sample. Astron. J. 141, 100–119 (2011).

    Article  ADS  Google Scholar 

  112. Stierwalt, S. et al. Mid-infrared properties of nearby luminous infrared galaxies. I. Spitzer Infrared Spectrograph spectra for the GOALS sample. Astrophys. J. Suppl. 206, 1–12 (2013).

  113. Dole, H. et al. Far-infrared source counts at 70 and 160 microns in Spitzer deep surveys. Astrophys. J. Suppl. 154, 87–92 (2004).

  114. Le Floch, E. et al. Infrared luminosity functions from the Chandra Deep Field South: The Spitzer view on the history of dusty star formation at 0 < z < 1. Astrophys. J. 632, 169–190 (2005).

    Article  ADS  Google Scholar 

  115. Magnelli, B. et al. The deepest Herschel-PACS far-infrared survey: Number counts and infrared luminosity functions from combined PEP/GOODS-H observations. Astron. Astrophys. 553, 132–153 (2013).

    Article  Google Scholar 

  116. Armus, L. et al. GOALS: The Great Observatories All-sky LIRG Survey. Publ. Astron. Soc. Pac. 121, 559–576 (2009).

    Article  ADS  Google Scholar 

  117. Martin, C. et al. The galaxy evolution explorer. Proc. SPIE 4854, 336–350 (2003).

    Article  ADS  Google Scholar 

  118. Petric, A. O. et al. Mid-infrared spectral diagnostics of luminous infrared galaxies. Astrophys. J. 730, 28–38 (2011).

    Article  ADS  Google Scholar 

  119. Inami, H. et al. Mid-infrared atomic fine-structure emission-line spectra of luminous infrared galaxies: Spitzer/IRS spectra of the GOALS sample. Astrophys. J. 777, 156–171 (2013).

    Article  ADS  Google Scholar 

  120. Ho, L. C. & Keto, E. The mid-infrared fine-structure lines of Neon as an indicator of star formation rate in galaxies. Astrophys. J. 658, 314–318 (2007).

    Article  ADS  Google Scholar 

  121. Diaz-Santos, T. et al. The spatial extent of (U)LIRGs in the mid-infrared I. The continuum emission. Astrophys. J. 723, 993–1005 (2010).

    Article  ADS  Google Scholar 

  122. Diaz-Santos, T. et al. The spatial extent of (U)LIRGs in the mid-infrared II. Feature emission. Astrophys. J. 741, 32–42 (2011).

    Article  ADS  Google Scholar 

  123. Soifer, B. T. et al. High spatial resolution imaging of Arp 220 from 3 to 25 microns. Astrophys. J. 513, 207–214 (1999).

    Article  ADS  Google Scholar 

  124. Soifer, B. T. et al. High resolution mid-infrared imaging of ultraluminous infrared galaxies. Astron. J. 119, 509–523 (2000).

    Article  ADS  Google Scholar 

  125. Elbaz, D. et al. GOODS-Herschel: an infrared main sequence for star forming galaxies. Astron. Astrophys. 533, 119–144 (2011).

    Article  Google Scholar 

  126. Alonso-Herrero, A. et al. The extreme star formation activity of Arp 299 revealed by Spitzer IRS spectral mapping. Astrophys. J. 697, 660–675 (2009).

    Article  ADS  Google Scholar 

  127. Haan, S. et al. Spitzer IRS spectral mapping of the Toomre sequence: Spatial variations of PAH, gas and dust properties in nearby major mergers. Astrophys. J. Suppl. 197, 27–53 (2011).

    Article  ADS  Google Scholar 

  128. Inami, H. et al. The buried starburst in the interacting galaxy II Zw 096 as revealed by the Spitzer Space Telescope. Astron. J. 140, 63–74 (2010).

    Article  ADS  Google Scholar 

  129. Howell, J. H. et al. The Great Observatories All-sky LIRG Survey: Comparison of ultraviolet and far-infrared properties. Astrophys. J. 715, 572–588 (2010).

    Article  ADS  Google Scholar 

  130. Charmandaris, V., Le Floch, E. & Mirabel, I. F. A bias in optical observations of high-redshift luminous infrared galaxies. Astrophys. J. Lett 600, 15–18 (2004).

    Article  ADS  Google Scholar 

  131. Wu, Y. et al. Infrared luminous galaxies and aromatic features in the 24 μm flux-limited sample of 5MUSES. Astrophys. J. 723, 895–914 (2010).

    Article  ADS  Google Scholar 

  132. Shipley, H. V. et al. Spitzer spectroscopy of infrared-luminous galaxies: diagnostics of active galactic nuclei and star formation and contribution to total infrared luminosity. Astrophys. J. 769, 75–96 (2013).

    Article  ADS  Google Scholar 

  133. Jannuzi, B.T. & Dey, A. The NOAO deep wide field survey. In Photometric Redshifts and the Detection of High Redshift Galaxies, ASP Conf. Series Vol. 191 (eds Weymann, R. et al.) 111 (ASP, 1999).

  134. Lacy, M. et al. The Infrared Array Camera component of the Spitzer Space Telescope extragalactic First Look Survey. Astrophys. J. Suppl. 161, 41–52 (2005).

    Article  ADS  Google Scholar 

  135. Lonsdale, C. J. et al. SWIRE: The SIRTF Wide-area Infrared Extragalactic Survey. Publ. Astron. Soc. Pac. 115, 897–927 (2003).

    Article  ADS  Google Scholar 

  136. Houck, J. R. et al. Spectroscopic redshifts to z > 2 for optically obscured sources discovered with the Spitzer Space Telescope. Astrophys. J. Lett. 622, L105–L108 (2005).

    Article  ADS  Google Scholar 

  137. Weedman, D. W. et al. Spitzer IRS spectra of optically faint infrared sources with weak spectra features. Astrophys. J. 651, 101–112 (2006).

    Article  ADS  Google Scholar 

  138. Desai, V. et al. Redshift distribution of extragalactic 24 micron sources. Astrophys. J. 679, 1204–1217 (2008).

    Article  ADS  Google Scholar 

  139. Yan, L. et al. Spitzer mid-infrared spectroscopy of infrared luminous galaxies at z ~ 2. I. The spectra. Astrophys. J. 658, 778–793 (2007).

    Article  ADS  Google Scholar 

  140. Sajina, A. et al. Spitzer mid-infrared spectroscopy of infrared luminous galaxies at z ~ 2. II. Diagnostics. Astrophys. J. 664, 713–737 (2007).

    Article  ADS  Google Scholar 

  141. Lacy, M. et al. Obscured and unobscured active galactic nuclei in the Spitzer Space Telescope First Look Survey. Astrophys. J. Suppl. 154, 166–169 (2004).

    Article  ADS  Google Scholar 

  142. Stern, D. et al. Mid-infrared selection of active galaxies. Astrophys. J. 631, 163–168 (2005).

    Article  ADS  Google Scholar 

  143. Donley, J. L. et al. Identifying luminous active galactic nuclei in deep surveys: Revised IRAC selection criteria. Astrophys. J. 748, 142–163 (2012).

    Article  ADS  Google Scholar 

  144. Fang, G. et al. Selection and mid-infrared spectroscopy of ultraluminous star forming galaxies at z ~ 2. Astrophys. J. 781, 63 (2014).

    Article  ADS  Google Scholar 

  145. Lacy, M. & Sajina, A. Active Galactic Nuclei as seen by the Spitzer Space Telescope. Nat. Astron. 4, 352–363 (2020).

    Article  ADS  Google Scholar 

  146. Wang, W.-H., Barger, A. J. & Cowie, L. L. A Ks and IRAC selection of high-redshift extremely red objects. Astrophys. J. 744, 155–173 (2012).

    Article  ADS  Google Scholar 

  147. Caputi, K. I. et al. The nature of extremely red H-[4.5] > 4 galaxies rececaled with SEDS and CANDELS. Astrophys. J. Lett. 750, 20–26 (2012).

    Article  ADS  Google Scholar 

  148. Huang, J.-S. et al. Infrared Spectrograph spectroscopy and multi-wavelength study of luminous star-forming galaxies at z ~ 1.9. Astrophys. J. 700, 183–198 (2009).

    Article  ADS  Google Scholar 

  149. Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).

    Article  ADS  Google Scholar 

  150. Marconi, A. & Hunt, L. K. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. Lett 589, L21–L24 (2003).

    Article  ADS  Google Scholar 

  151. Weedman, D. W. et al. Active galactic nuclei and starburst classification from Spitzer mid-infrared spectra for high-redshift SWIRE sources. Astrophys. J. 653, 101–111 (2006).

    Article  ADS  Google Scholar 

  152. Dey, A. et al. A significant population of very luminous dust-obscured galaxies at redshift z ~ 2. Astrophys. J. 677, 943–956 (2008).

    Article  ADS  Google Scholar 

  153. Desai, V. et al. Strong polycyclic aromatic hydrocarbon emission from z ~ 2 ULIRGs. Astrophys. J. 700, 1190–1204 (2009).

    Article  ADS  Google Scholar 

  154. Farrah, D. et al. The nature of star formation in distant ultraluminous infrared galaxies selected in a remarkably narrow redshift range. Astrophys. J. 677, 957–969 (2008).

    Article  ADS  Google Scholar 

  155. Fiolet, N. et al. Mid-infrared spectroscopy of Spitzer-selected ultra-luminous starbursts at z ~ 2. Astron. Astrophys. 524, 33–52 (2010).

    Article  Google Scholar 

  156. Brand, K. et al. Spitzer mid-infrared spectroscopy of 70 micron selected distant luminous infrared galaxies. Astrophys. J. 673, 119–127 (2008).

    Article  ADS  Google Scholar 

  157. Farrah, D. et al. Mid-infrared spectroscopy of optically faint extragalactic 70 micron sources. Astrophys. J. 696, 2044–2053 (2009).

    Article  ADS  Google Scholar 

  158. Teplitz, H. I. et al. measuring PAH emission in ultradeep Spitzer IRS spectroscopy of high-redshift IR-luminous galaxies. Astrophys. J. 659, 941–949 (2007).

    Article  ADS  Google Scholar 

  159. Ivison, R. J. et al. Deep radio imaging of the SCUBA 8-mJy survey fields: submillimetre source identifications and redshift distribution. Mon. Not. R. Astron. Soc 337, 1–25 (2002).

    Article  ADS  Google Scholar 

  160. Blain, A. W., Smail, I., Ivison, R. J., Kneid, J.-P. & Frayer, D. T. Submillimeter galaxies. Phys. Rev. Lett 369, 111–176 (2002).

    Google Scholar 

  161. Menendez-Delmestre, K. et al. Mid-infrared spectroscopy of high-redshift submillimeter galaxies: First results. Astrophys. J. Lett. 655, L68 (2007).

    Article  ADS  Google Scholar 

  162. Pope, A. et al. Mid-infrared spectral diagnosis of submillimeter galaxies. Astrophys. J. 675, 1171–1193 (2008).

    Article  ADS  Google Scholar 

  163. Giavalisco, M. et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging. Astrophys. J. Lett. 600, L93–L98 (2004).

    Article  ADS  Google Scholar 

  164. Pope, A. et al. The nature of faint Spitzer-selected dust-obscured galaxies. Astrophys. J. 689, 127–133 (2008).

    Article  ADS  Google Scholar 

  165. Weisskopf, M. S. et al. An overview of the performance and scientific results from the Chandra X-ray observatory. Pub. Astron. Soc. Pac 114, 1–24 (2002).

    Article  ADS  Google Scholar 

  166. Sajina, A., Yan, L., Fadda, D., Dasyra, K. & Huynh, M. Spitzer and Herschel-based spectral energy distributions of 24 μm bright z ~ 0.3-30 starbursts and obscured quasars. Astrophys. J. 757, 13–54 (2012).

    Article  ADS  Google Scholar 

  167. Kirkpatrick, A. et al. GOODS-Herschel: Impact of active galactic nuclei and star formation activity on infrared spectral energy distributions at high redshift. Astrophys. J. 759, 139–161 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  168. Kirkpatrick, A. et al. The role of star formation and an AGN in dust heating of z = 0.3-28 galaxies. I. Evolution with redshift and luminosity. Astrophys. J. 814, 9–32 (2015).

    Article  ADS  Google Scholar 

  169. Noeske, K. G. et al. Star formation in AEGIS field galaxies since z = 1.1: The dominance of gradually declining star formation and the main sequence of star-forming galaxies. Astrophys. J. Lett. 660, L43–L46 (2007).

    Article  ADS  Google Scholar 

  170. Daddi, E. et al. Multiwavelength study of massive galaxies at z ~ 2. I. Star formation and galaxy growth. Astrophys. J. 670, 156–172 (2007).

    Article  ADS  Google Scholar 

  171. Riechers, D. et al. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4. Astrophys. J. 786, 31–39 (2014).

    Article  ADS  Google Scholar 

  172. Hodge, J. A. et al. Evidence for a clumpy, rotating gas disk in a submillimeter galaxy at z = 4. Astrophys. J. 760, 11–24 (2012).

    Article  ADS  Google Scholar 

  173. Hodge, J. A. et al. The kiloparsec-scale star formation law at redshift 4: Widespread, highly efficient star formation in the dust-obscured starburst galaxy GN20. Astrophys. J. Lett. 798, L18–L23 (2015).

    Article  ADS  Google Scholar 

  174. Dasyra, K. M. et al. High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei. Astrophys. J. Lett. 674, L9–L12 (2008).

    Article  ADS  Google Scholar 

  175. Gruppioni, C. et al. Tracing blakc hole accretion with SED decomposition and IR lines: From local galaxies to the high-z Universe. Mon. Not. R. Astron. Soc 458, 4297–4320 (2016).

    Article  ADS  Google Scholar 

  176. Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211–214 (2019).

    Article  ADS  Google Scholar 

  177. Roelfsema, P. R. et al. SPICA – a large cryogenci infrared space telescope unveiling the obscured Universe. Pub. Astron. Soc. Aus. 35, 30 (2018).

    ADS  Google Scholar 

  178. Meixner, M. et al. Origins space telescope mission concept study report. Preprint at https://arxiv.org/abs/1912.06213 (2019).

Download references

Acknowledgements

The authors would like to acknowledge helpful comments and contributions from by C. M. Bradford, T. Diaz-Santos, G. Helou, K. Larson, S. Linden, M. Meixner, A. Pope, D. Riechers, H. W. W. Spoon and M. Werner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Armus.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armus, L., Charmandaris, V. & Soifer, B.T. Observations of luminous infrared galaxies with the Spitzer Space Telescope. Nat Astron 4, 467–477 (2020). https://doi.org/10.1038/s41550-020-1106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1106-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing