Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The high-redshift Universe with Spitzer

Abstract

When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and the epoch of reionization? What are the conditions in typical star-forming galaxies at redshifts 4? Why is galaxy evolution dependent on environment? The Spitzer Space Telescope has been a crucial tool for addressing these questions. Accurate knowledge of stellar masses, ages and star formation rates requires measuring rest-frame optical (and ultraviolet) light, which only Spitzer can probe at high redshifts for a sufficiently large sample of typical galaxies. Many of these science goals are the main science drivers for the James Webb Space Telescope, and Spitzer afforded us their first exploration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensitivities and area of Spitzer surveys.
Fig. 2: Spitzer data are crucial for determining stellar ages.
Fig. 3: High-redshift galaxies detected in Spitzer images.
Fig. 4: Spitzer data can be used to measure (combined) strengths of several prominent optical lines.
Fig. 5: MACS1149-JD is the best example with evidence of an old stellar population at z ≈ 9.
Fig. 6: Spitzer data have been very effective in searching for and characterizing z > 1 galaxy clusters and protoclusters.

Similar content being viewed by others

References

  1. Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. Suppl. 154, 1–9 (2004).

    Article  ADS  Google Scholar 

  2. Werner, M. & Eisenhardt, P. More Things in the Heavens: How Infrared Astronomy is Expanding our View of the Universe Ch. 15 (Princeton Univ. Press, 2019).

  3. Schneider, D. P., Schmidt, M. & Gunn, J. E. PC 1158+4635: an optically selected quasar with a redshift of 4.73. Astron. J. 98, 1951–1958 (1989).

    Article  ADS  Google Scholar 

  4. Dey, A., Spinrad, H., Stern, D., Graham, J. R. & Chaffee, F. H. A Galaxy at z = 5.34. Astrophys. J. Lett 498, L93–L97 (1998).

    Article  ADS  Google Scholar 

  5. Lilly, S. J. Discovery of a radio galaxy at a redshift of 3.395. Astrophys. J. 333, 161–167 (1988).

    Article  ADS  Google Scholar 

  6. Chambers, K. C., Miley, G. K. & van Breugel, W. J. M. 4C 41.17: a radio galaxy at a redshift of 3.8. Astrophys. J. 363, 21–39 (1990).

    Article  ADS  Google Scholar 

  7. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. L. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. Lett. 462, L17–L21 (1996).

    Article  ADS  Google Scholar 

  8. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004).

    Article  ADS  Google Scholar 

  9. Egami, E. et al. Spitzer and Hubble Space Telescope constraints on the physical properties of the z ~ 7 galaxy strongly lensed by A2218. Astrophys. J. Lett. 618, L5–L8 (2005).

    Article  ADS  Google Scholar 

  10. Chary, R.-R., Stern, D. & Eisenhardt, P. Spitzer constraints on the z = 6.56 galaxy lensed by Abell 370. Astrophys. J. 635, L5–L8 (2005).

    Article  ADS  Google Scholar 

  11. Yan, H. et al. Rest-frame ultraviolet-to-optical properties of galaxies at z ≈ 6 and z ≈ 5 in the Hubble ultra deep field: from Hubble to Spitzer. Astrophys. J. 634, 109–127 (2005).

    Article  ADS  Google Scholar 

  12. Eyles, L. P. et al. Spitzer imaging of i’-drop galaxies: old stars at z ≈ 6. Mon. Not. R. Astron. Soc 364, 443–454 (2005).

    ADS  Google Scholar 

  13. Calzetti, D. Star formation in galaxies as traced by the Spitzer Space Telescope. Nat. Astron. https://doi.org/10.1038/s41550-020-1052-0 (2020).

  14. Rieke, G. H. et al. The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. Ser. 154, 25–29 (2004).

    Article  ADS  Google Scholar 

  15. Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  16. Fan, X., Carilli, C. L. & Keating, B. Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006).

    Article  ADS  Google Scholar 

  17. Robertson, B. E., Ellis, R. S., Furlanetto, S. R. & Dunlop, J. S. Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, L19 (2015).

    Article  ADS  Google Scholar 

  18. Mason, C. A. et al. Inferences on the timeline of reionization at z ~ 8 from the KMOS Lens-Amplified Spectroscopic Survey. Mon. Not. R. Astron. Soc 485, 3947–3969 (2019).

    Article  ADS  Google Scholar 

  19. Labbé, I. et al. Ultradeep Infrared Array Camera observations of sub-L* z ~ 7 and z ~ 8 galaxies in the Hubble ultra deep field: the contribution of low-luminosity galaxies to the stellar mass density and reionization. Astrophys. J. Lett. 708, L26–L31 (2010).

    Article  ADS  Google Scholar 

  20. Stefanon, M. et al. The brightest z 8 galaxies over the COSMOS UltraVISTA field. Astrophys. J. 883, 99 (2019).

    Article  ADS  Google Scholar 

  21. Postman, M. et al. The Cluster Lensing and Supernova Survey with Hubble: an overview. Astrophys. J. Suppl. Ser. 199, 25 (2012).

    Article  ADS  Google Scholar 

  22. Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

    Article  ADS  Google Scholar 

  23. Coe, D. et al. RELICS: Reionization Lensing Cluster Survey. Astrophys. J. 884, 85 (2019).

    Article  ADS  Google Scholar 

  24. Ebeling, H. et al. A complete sample of 12 very X-ray luminous galaxy clusters at z > 0.5. Astrophys. J. Lett. 661, L33–L36 (2007).

    Article  ADS  Google Scholar 

  25. Repp, A. & Ebeling, H. Science from a glimpse: Hubble SNAPshot observations of massive galaxy clusters. Mon. Not. R. Astron. Soc 479, 844–864 (2018).

    ADS  Google Scholar 

  26. Bouwens, R. J. et al. A census of star-forming galaxies in the z ~ 9–10 Universe based on HST+Spitzer observations over 19 clash clusters: three candidate z ~ 9–10 galaxies and improved constraints on the star formation rate density at z ~ 9.2. Astrophys. J. 795, 126 (2014).

    Article  ADS  Google Scholar 

  27. Bradač, M. et al. Spitzer Ultra Faint SUrvey Program (SURFS UP). I. An overview. Astrophys. J. 785, 108 (2014).

    Article  ADS  Google Scholar 

  28. Strait, V. et al. Stellar properties of z 8 galaxies in the Reionization Lensing Cluster Survey. Astrophys. J. 888, 124 (2020).

    Article  ADS  Google Scholar 

  29. Merlin, E. et al. The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416. Astron. Astrophys. 590, A30 (2016).

    Article  Google Scholar 

  30. Castellano, M. et al. The ASTRODEEP Frontier Fields catalogues. II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416. Astron. Astrophys. 590, A31 (2016).

    Article  Google Scholar 

  31. Di Criscienzo, M. et al. The ASTRODEEP Frontier Fields catalogues. III. Multiwavelength photometry and rest-frame properties of MACS-J0717 and MACS-J1149. Astron. Astrophys. 607, A30 (2017).

    Article  Google Scholar 

  32. Santini, P. et al. The star formation main sequence in the Hubble Space Telescope Frontier Fields. Astrophys. J. 847, 76 (2017).

    Article  ADS  Google Scholar 

  33. Shipley, H. V. et al. HFF-DeepSpace photometric catalogs of the 12 Hubble Frontier Fields, clusters, and parallels: photometry, photometric redshifts, and stellar masses. Astrophys. J. Suppl. Ser. 235, 14 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  34. Bradač, M. et al. Hubble Frontier Field photometric catalogues of Abell 370 and RXC J2248.7–4431: multiwavelength photometry, photometric redshifts, and stellar properties. Mon. Not. R. Astron. Soc. 489, 99–107 (2019).

    Article  ADS  Google Scholar 

  35. Lam, D. et al. Detection of a lensed z ≈ 11 galaxy in the rest-optical with Spitzer/IRAC and the inferred SFR, stellar mass, and physical size. Preprint at https://arxiv.org/abs/1903.08177 (2019).

  36. Labbe, I. et al. The spectral energy distributions of z ~ 8 galaxies from the IRAC Ultra Deep Fields: emission lines, stellar masses, and specific star formation rates at 650 Myr. Astrophys. J. Lett. 777, L19 (2013).

    Article  ADS  Google Scholar 

  37. Yan, H. et al. The stellar masses and star formation histories of galaxies at z ~ 6: constraints from Spitzer observations in the Great Observatories Origins Deep Survey. Astrophys. J. 651, 24 (2006).

    Article  ADS  Google Scholar 

  38. Capak, P. et al. Spectroscopy of luminous z > 7 galaxy candidates and sources of contamination in z > 7 galaxy searches. Astrophys. J. 730, 68 (2011).

    Article  ADS  Google Scholar 

  39. Finkelstein, S. L. et al. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. Nature 502, 524–527 (2013).

    Article  ADS  Google Scholar 

  40. Smit, R. et al. Evidence for ubiquitous high-equivalent-width nebular emission in z ~ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies. Astrophys. J. 784, 58 (2014).

    Article  ADS  Google Scholar 

  41. De Barros, S., Schaerer, D. & Stark, D. P. Properties of z ~ 3–6 Lyman break galaxies. Astron. Astrophys. 563, A81 (2014).

    Article  Google Scholar 

  42. Roberts-Borsani, G. W. et al. z 7 galaxies with red Spitzer/IRAC 3.6.-4.5. Colors in the full CANDELS data set: the brightest-known galaxies at z ~ 7–9 and a probable spectroscopic confirmation at z = 7.48. Astrophys. J. 823, 143 (2016).

    Article  ADS  Google Scholar 

  43. Jiang, L. et al. Physical properties of spectroscopically confirmed galaxies at z ≥ 6. III. Stellar populations from SED modeling with secure Lyα emission and redshifts. Astrophys. J. 816, 16 (2016).

    Article  ADS  Google Scholar 

  44. De Barros, S. et al. The GREATS Hβ + [O iii] luminosity function and galaxy properties at z ~ 8: walking the way of JWST. Mon. Not. R. Astron. Soc. 489, 2355–2366 (2019).

    Article  ADS  Google Scholar 

  45. Shim, H. et al. z ~ 4 Hα emitters in the Great Observatories Origins Deep Survey: tracing the dominant mode for growth of galaxies. Astrophys. J. 738, 69 (2011).

    Article  ADS  Google Scholar 

  46. Smit, R. et al. High-precision photometric redshifts from Spitzer/IRAC: extreme [3.6]–[4.5] colors identify galaxies in the redshift range z ~ 6.6–6.9. Astrophys. J. 801, 122 (2015).

    Article  ADS  Google Scholar 

  47. Huang, K.-H. et al. Detection of Lyman-alpha emission from a triply imaged z = 6.85 galaxy behind MACS J2129.4−0741. Astrophys. J. Lett. 823, L14 (2016).

    Article  ADS  Google Scholar 

  48. Laporte, N. et al. The first Frontier Fields cluster: 4.5 μm excess in a z ~ 8 galaxy candidate in Abell 2744. Astron. Astrophys. 562, L8 (2014).

    Article  ADS  Google Scholar 

  49. Bridge, J. S. et al. The super eight galaxies: properties of a sample of very bright galaxies at 7 < z < 8. Astrophys. J. 882, 42 (2019).

    Article  ADS  Google Scholar 

  50. Katz, H., Laporte, N., Ellis, R. S., Devriendt, J. & Slyz, A. Probing cosmic dawn: modelling the assembly history, SEDs, and dust content of selected z ~ 9 galaxies. Mon. Not. R. Astron. Soc 484, 4054–4068 (2019).

    Article  ADS  Google Scholar 

  51. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 18–24 (2004).

    Article  ADS  Google Scholar 

  52. Teplitz, H. I. et al. Measuring PAH emission in ultradeep Spitzer IRS spectroscopy of high-redshift IR-luminous galaxies. Astrophys. J. 659, 941–949 (2007).

    Article  ADS  Google Scholar 

  53. Pope, A. et al. Mid-infrared spectral diagnosis of submillimeter galaxies. Astrophys. J. 675, 1171–1193 (2008).

    Article  ADS  Google Scholar 

  54. Hashimoto, T. et al. The onset of star formation 250 million years after the Big Bang. Nature 557, 392–395 (2018).

    Article  ADS  Google Scholar 

  55. Laporte, N. et al. Dust in the reionization era: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. Lett. 837, L21 (2017).

    Article  ADS  Google Scholar 

  56. Zheng, W. et al. A magnified young galaxy from about 500 million years after the Big Bang. Nature 489, 406–408 (2012).

    Article  ADS  Google Scholar 

  57. Zheng, W. et al. Young galaxy candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223. Astrophys. J. 836, 210 (2017).

    Article  ADS  Google Scholar 

  58. Hoag, A. et al. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization. Nat. Astron 1, 0091 (2017).

    Google Scholar 

  59. Oesch, P. A. et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).

    Article  ADS  Google Scholar 

  60. Oesch, P. A. et al. The most luminous z ~ 9–10 galaxy candidates yet found: the luminosity function, cosmic star-formation rate, and the first mass density estimate at 500 Myr. Astrophys. J. 786, 108 (2014).

    Article  ADS  Google Scholar 

  61. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780, 1–64 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Du, X. et al. Searching for z > 6.5 analogs near the peak of cosmic star formation. Astrophys. J. 890, 65 (2020).

    Article  ADS  Google Scholar 

  63. Li, Z. & Malkan, M. A. Extreme O III. Emitters at z ~ 0.5. Astrophys. J. 860, 83 (2018).

    Article  ADS  Google Scholar 

  64. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  65. Madau, P. et al. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z ~ 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996).

    Article  ADS  Google Scholar 

  66. Madau, P., Pozzetti, L. & Dickinson, M. The star formation history of field galaxies. Astrophys. J. 498, 106–116 (1998).

    Article  ADS  Google Scholar 

  67. Lilly, S. J., Le Fevre, O., Hammer, F. & Crampton, D. The Canada–France Redshift Survey: the luminosity density and star formation history of the universe to z approximately 1. Astrophys. J. Lett 460, L1 (1996).

    Article  ADS  Google Scholar 

  68. Le Floc’h, E. et al. Infrared luminosity functions from the Chandra Deep Field-South: the Spitzer view on the history of dusty star formation at 0 z 1. Astrophys. J. 632, 169–190 (2005).

    Article  ADS  Google Scholar 

  69. Magnelli, B. et al. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer. Astron. Astrophys. 528, A35 (2011).

    Article  Google Scholar 

  70. Davidzon, I. et al. The COSMOS2015 galaxy stellar mass function. Thirteen billion years of stellar mass assembly in ten snapshots. Astron. Astrophys. 605, A70 (2017).

    Article  Google Scholar 

  71. Song, M. et al. The evolution of the galaxy stellar mass function at z = 4–8: a steepening low-mass-end slope with increasing redshift. Astrophys. J. 825, 5 (2016).

    Article  ADS  Google Scholar 

  72. Grazian, A. et al. The galaxy stellar mass function at 3.5 ≤ z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields. Astron. Astrophys. 575, A96 (2015).

    Article  Google Scholar 

  73. Caputi, K. I. et al. Spitzer Bright, UltraVISTA faint sources in COSMOS: the contribution to the overall population of massive galaxies at z = 3–7. Astrophys. J. 810, 73 (2015).

    Article  ADS  Google Scholar 

  74. Salmon, B. et al. The relation between star formation rate and stellar mass for galaxies at 3.5 ≤ z ≤ 6.5 in CANDELS. Astrophys. J. 799, 183 (2015).

    Article  ADS  Google Scholar 

  75. Steinhardt, C. L. et al. Star formation at 4 < z < 6 from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). Astrophys. J. Lett. 791, L25 (2014).

    Article  ADS  Google Scholar 

  76. Ashby, M. L. N. et al. Spitzer matching survey of the UltraVISTA Ultra-deep Stripes (SMUVS): full-mission IRAC mosaics and catalogs. Astrophys. J. Suppl. Ser. 237, 39 (2018).

    Article  ADS  Google Scholar 

  77. Caputi, K. I. et al. Star formation in galaxies at z ~ 4–5 from the SMUVS survey: a clear starburst/main-sequence bimodality for Hα emitters on the SFR-M* plane. Astrophys. J. 849, 45 (2017).

    Article  ADS  Google Scholar 

  78. Deshmukh, S. et al. The Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes (SMUVS): the evolution of dusty and nondusty galaxies with stellar mass at z = 2–6. Astrophys. J. 864, 166 (2018).

    Article  ADS  Google Scholar 

  79. Guzmán, R. et al. The nature of compact galaxies in the Hubble Deep Field. II. Spectroscopic properties and implications for the evolution of the star formation rate density of the Universe. Astrophys. J. 489, 559–572 (1997).

    Article  ADS  Google Scholar 

  80. Stark, D. P. et al. The evolutionary history of Lyman break galaxies between redshift 4 and 6: observing successive generations of massive galaxies in formation. Astrophys. J. 697, 1493–1511 (2009).

    Article  ADS  Google Scholar 

  81. Gonzalez, A. H., Papovich, C., Bradač, M. & Jones, C. Spectroscopic confirmation of a z = 2.79 multiply imaged luminous infrared galaxy behind the bullet cluster. Astrophys. J. 720, 245–251 (2010).

    Article  ADS  Google Scholar 

  82. Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z ~ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009).

    Article  ADS  Google Scholar 

  83. Davidzon, I., Ilbert, O., Faisst, A. L., Sparre, M. & Capak, P. L. An alternate approach to measure specific star formation rates at 2 < z < 7. Astrophys. J. 852, 107 (2018).

    Article  ADS  Google Scholar 

  84. Tasca, L. A. M. et al. Evidence for major mergers of galaxies at 2 z < 4 in the VVDS and VUDS surveys. Astron. Astrophys. 565, A10 (2014).

    Article  Google Scholar 

  85. de Barros, S., Schaerer, D. & Stark, D. P. Properties of z ~ 3–6 Lyman break galaxies. II. Impact of nebular emission at high redshift. Astron. Astrophys 563, A81 (2014).

    Google Scholar 

  86. Duncan, K. et al. The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field. Mon. Not. R. Astron. Soc. 444, 2960–2984 (2014).

    Article  ADS  Google Scholar 

  87. González, V. et al. Slow evolution of the specific star formation rate at z > 2: the impact of dust, emission lines, and a rising star formation history. Astrophys. J. 781, 34 (2014).

    Article  ADS  Google Scholar 

  88. Stark, D. P. et al. Keck Spectroscopy of 3 < z < 7 faint Lyman break galaxies: the importance of nebular emission in understanding the specific star formation rate and stellar mass density. Astrophys. J. 763, 129 (2013).

    Article  ADS  Google Scholar 

  89. Moustakas, J., Kennicutt, R. C., Jr. & Tremonti, C. A. Optical star formation rate indicators. Astrophys. J. 642, 775–796 (2006).

    Article  ADS  Google Scholar 

  90. Smit, R. et al. Evidence for ubiquitous high-equivalent-width nebular emission in z ~ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies. Astrophys. J. 784, 58 (2014).

    Article  ADS  Google Scholar 

  91. Bouwens, R. J. et al. The Lyman-continuum photon production efficiency ξ ion of z ~ 4–5 galaxies from IRAC-based Hα measurements: implications for the escape fraction and cosmic reionization. Astrophys. J. 831, 176 (2016).

    Article  ADS  Google Scholar 

  92. Mármol-Queraltó, E. et al. The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5. Mon. Not. R. Astron. Soc. 460, 3587–3597 (2016).

    Article  ADS  Google Scholar 

  93. Faisst, A. L. et al. A coherent study of emission lines from broadband photometry: specific star formation rates and [O iii]/Hβ ratio at 3 < z < 6. Astrophys. J. 821, 122 (2016).

    Article  ADS  Google Scholar 

  94. Faisst, A. L., Capak, P. L., Emami, N., Tacchella, S. & Larson, K. L. The recent burstiness of star formation in galaxies at z ~ 4.5 from Hα measurements. Astrophys. J. 884, 133 (2019).

    Article  ADS  Google Scholar 

  95. Lam, D. et al. The mean Hα EW and Lyman-continuum photon production efficiency for faint z ≈ 4–5 galaxies. Astron. Astrophys. 627, A164 (2019).

    Article  Google Scholar 

  96. Dressler, A. et al. A spectroscopic catalog of 10 distant rich clusters of galaxies. Astrophys. J. Suppl. Ser. 122, 51–80 (1999).

    Article  ADS  Google Scholar 

  97. Poggianti, B. M. et al. The star formation histories of galaxies in distant clusters. Astrophys. J. 518, 576–593 (1999).

    Article  ADS  Google Scholar 

  98. Rosati, P., Borgani, S. & Norman, C. The evolution of X-ray clusters of galaxies. Annu. Rev. Astron. Astrophys. 40, 539–577 (2002).

    Article  ADS  Google Scholar 

  99. Lemaux, B. C. et al. The VIMOS Ultra-Deep Survey: emerging from the dark, a massive proto-cluster at z ~ 4.57. Astron. Astrophys. 615, A77 (2018).

    Article  Google Scholar 

  100. Capak, P. L. et al. A massive protocluster of galaxies at a redshift of z ≈ 5.3. Nature 470, 233–235 (2011).

    Article  ADS  Google Scholar 

  101. Galametz, A. et al. The mid-infrared environments of high-redshift radio galaxies. Astrophys. J. 749, 169 (2012).

    Article  ADS  Google Scholar 

  102. Noirot, G. et al. HST grism confirmation of 16 structures at 1.4 < z < 2.8 from the Clusters Around Radio-Loud AGN (CARLA) Survey. Astrophys. J. 859, 38 (2018).

    Article  ADS  Google Scholar 

  103. Stanford, S. A. et al. An IR-selected galaxy cluster at z = 1.41. Astrophys. J. Lett 634, L129–L132 (2005).

    Article  ADS  Google Scholar 

  104. Stanford, S. A. et al. The XMM Cluster Survey: a massive galaxy cluster at z = 1.45. Astrophys. J. Lett 646, L13–L16 (2006).

    Article  ADS  Google Scholar 

  105. Eisenhardt, P. R. M. et al. Clusters of galaxies in the first half of the Universe from the IRAC Shallow Survey. Astrophys. J. 684, 905–932 (2008).

    Article  ADS  Google Scholar 

  106. Papovich, C. et al. A Spitzer-selected galaxy cluster at z = 1.62. Astrophys. J. 716, 1503–1513 (2010).

    Article  ADS  Google Scholar 

  107. Gonzalez, A. H. et al. The massive and distant clusters of WISE survey. I. Survey overview and a catalog of >2000 galaxy clusters at z 1. Astrophys. J. Suppl. Ser. 240, 33 (2019).

    Article  ADS  Google Scholar 

  108. Wilson, G. et al. Spectroscopic confirmation of a massive red-sequence-selected galaxy cluster at z = 1.34 in the SpARCS-South Cluster Survey. Astrophys. J. 698, 1943–1950 (2009).

    Article  ADS  Google Scholar 

  109. Muzzin, A. et al. Spectroscopic confirmation of two massive red-sequence-selected galaxy clusters at z ~ 1.2 in the SpARCS-North Cluster Survey. Astrophys. J. 698, 1934–1942 (2009).

    Article  ADS  Google Scholar 

  110. Sawicki, M. The 1.6 micron bump as a photometric redshift indicator. Astron. J. 124, 3050–3060 (2002).

    Article  ADS  Google Scholar 

  111. Stanford, S. A. et al. IDCS J1426.5+3508: discovery of a massive, infrared-selected galaxy cluster at z = 1.75. Astrophys. J. 753, 164 (2012).

    Article  ADS  Google Scholar 

  112. Rettura, A. et al. Candidate clusters of galaxies at z > 1.3 identified in the Spitzer South Pole Telescope Deep Field Survey. Astrophys. J. 797, 109 (2014).

    Article  ADS  Google Scholar 

  113. Ashby, M. L. N. et al. SEDS: the Spitzer Extended Deep Survey. Survey design, photometry, and deep IRAC source counts. Astrophys. J. 769, 80 (2013).

    Article  ADS  Google Scholar 

  114. Brodwin, M. et al. The era of star formation in galaxy clusters. Astrophys. J. 779, 138 (2013).

    Article  ADS  Google Scholar 

  115. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  116. Nantais, J. B. et al. Stellar mass function of cluster galaxies at z ~ 1.5: evidence for reduced quenching efficiency at high redshift. Astron. Astrophys. 592, A161 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This Review is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through ADAP grant 80NSSC18K0945, NSF grant AST 1815458 and through an award issued by JPL/Caltech. I thank B. Lemaux and V. Strait for their help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maruša Bradač.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradač, M. The high-redshift Universe with Spitzer. Nat Astron 4, 478–485 (2020). https://doi.org/10.1038/s41550-020-1104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1104-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing