Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A giant galaxy in the young Universe with a massive ring


In the local (redshift z ≈ 0) Universe, collisional ring galaxies make up only ~0.01% of galaxies1 and are formed by head-on galactic collisions that trigger radially propagating density waves2,3,4. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe5,6,7,8,9. However, not much is known about distant (z > 0.1) collisional rings10,11,12,13,14. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z = 2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5–2.2 times larger and is forming stars 50 times faster. The extended, diffuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved15,16, the implied large bar in a giant disk would be inconsistent with the current understanding of the earliest formation of barred spirals17,18,19,20,21. Contrary to previous predictions10,11,12, this work suggests that massive collisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multiwavelength views of R5519 and its neighbouring environment.
Fig. 2: A joint analysis of the MOSFIRE and OSIRIS ring kinematics.
Fig. 3: Comparing the size of R5519 with the size distribution of late-type galaxies at z ≈ 2.

Data availability

The imaging data presented here are publicly available from the ZFOURGE survey website ( and from the 3D-HST archive ( The spectroscopic data of this work were based on observations made with the Keck telescope from the W. M. Keck Observatory. The raw spectroscopic data can be accessed through the publicly available Keck Observatory Archive ( The reduced data and other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

Code availability

The customized MOSFIRE spectroscopic fitting code used in this work can be found here ( Scripts related to EAGLE simulations analysis in this paper are available from A.E. ( on reasonable request. Other scripts related to the analysis in this paper are available from T.Y. on reasonable request.


  1. 1.

    Madore, B. F., Nelson, E. & Petrillo, K. Atlas and catalog of collisional ring galaxies. Astrophys. J. 181, 572–604 (2009).

    ADS  Google Scholar 

  2. 2.

    Lynds, R. & Toomrel, A. On the interpretation of ring galaxies: the binary ring system II Hz 4. Astrophys. J. 209, 382–388 (1976).

    ADS  Google Scholar 

  3. 3.

    Struck-Marcell, C. & Higdon, J. L. Hydrodynamic models of the Cartwheel ring galaxy. Astrophys. J. 411, 108–124 (1993).

    ADS  Google Scholar 

  4. 4.

    Appleton, P. N. & Struck-Marcell, C. Collisional ring galaxies. Fund. Cosmic Phys. 16, 111–220 (1996).

    ADS  Google Scholar 

  5. 5.

    Higdon, J. L. Wheels of fire. I. Massive star formation in the Cartwheel ring galaxy. Astrophys. J. 455, 524 (1995).

    ADS  Google Scholar 

  6. 6.

    Gerber, R. A., Lamb, S. A. & Balsara, D. S. A stellar and gas dynamical numerical model of ring galaxies. Mon. Not. R. Astron. Soc. 278, 345–366 (1996).

    ADS  Google Scholar 

  7. 7.

    Struck, C. Applying the analytic theory of colliding ring galaxies. Mon. Not. R. Astron. Soc. 403, 1516–1530 (2010).

    ADS  Google Scholar 

  8. 8.

    Mapelli, M. & Mayer, L. Ring galaxies from off-centre collisions. Mon. Not. R. Astron. Soc. 420, 1158–1166 (2012).

    ADS  Google Scholar 

  9. 9.

    Higdon, J. L., Higdon, S. J. U., Martín Ruiz, S. & Rand, R. J. Molecular gas and star formation in the Cartwheel. Astrophys. J. Letters 814, L1 (2015).

    ADS  Google Scholar 

  10. 10.

    Lavery, R. J., Remijan, A., Charmandaris, V., Hayes, R. D. & Ring, A. A. Probing the evolution of the galaxy interaction/merger rate using collisional ring galaxies. Astrophys. J. 612, 679–689 (2004).

    ADS  Google Scholar 

  11. 11.

    Elmegreen, D. M. & Elmegreen, B. G. Rings and bent chain galaxies in the GEMS and GOODS fields. Astrophys. J. 651, 676–687 (2006).

    ADS  Google Scholar 

  12. 12.

    D’Onghia, E., Mapelli, M. & Moore, B. Merger and ring galaxy formation rates at z≤2. Mon. Not. R. Astron. Soc. 389, 1275–1283 (2008).

    ADS  Google Scholar 

  13. 13.

    Elagali, A. et al. Ring galaxies in the EAGLE hydrodynamical simulations. Mon. Not. R. Astron. Soc. 481, 2951–2969 (2018).

    ADS  Google Scholar 

  14. 14.

    Genzel, R. et al. The SINS/zC-SINF survey of z ~ 2 galaxy kinematics: evidence for gravitational quenching. Astrophys. J. 785, 75 (2014).

    ADS  Google Scholar 

  15. 15.

    Buta, R. J. & Combes, F. Galactic rings. Fund. Cosmic Phys. 17, 95–281 (1996).

    ADS  Google Scholar 

  16. 16.

    Comeron, S. et al. ARRAKIS: atlas of resonance rings as known in the S4G. Astron. Astrophys. 562, A121 (2014).

    Google Scholar 

  17. 17.

    Sheth, K. et al. Hot disks and delayed bar formation. Astrophys. J. 758, 136 (2012).

    ADS  Google Scholar 

  18. 18.

    Kraljic, F., Bournaud, F. & Martig, M. The two-phase formation history of spiral galaxies traced by the cosmic evolution of the bar fraction. Astrophys. J. 757, 60 (2012).

    ADS  Google Scholar 

  19. 19.

    Cen, R. Evolution of cold streams and the emergence of the Hubble sequence. Astrophys. J. Letters 789, L21 (2014).

    ADS  Google Scholar 

  20. 20.

    Elmegreen, D. M. & Elmegreen, B. G. The onset of spiral structure in the universe. Astrophys. J. 781, 11 (2014).

    ADS  Google Scholar 

  21. 21.

    Vincenzo, F., Kobayashi, C. & Yuan, T. Zoom-in cosmological hydrodynamical simulation of a star-forming barred, spiral galaxy at redshift z = 2. Mon. Not. R. Astron. Soc. 488, 4674–4689 (2019).

    ADS  Google Scholar 

  22. 22.

    Straatman, C. M. et al. The fourstar galaxy evolution survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z ~ 3.5. Astrophys. J. 830, 51 (2016).

    ADS  Google Scholar 

  23. 23.

    Momcheva, I. G. et al. The 3D-HST survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for ~100,000 galaxies. Astrophys. J.s 225, 27 (2016).

    ADS  Google Scholar 

  24. 24.

    Cowley, M. J. et al. ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2. Mon. Not. R. Astron. Soc. 457, 629–641 (2016).

    ADS  Google Scholar 

  25. 25.

    Romano, R., Mayya, Y. D. & Vorobyov, E. I. Stellar disks of collisional ring galaxies. I. New multiband images, radial intensity and color profiles, and confrontation with N-body simulations. Astron. J. 136, 1259–1289 (2008).

    ADS  Google Scholar 

  26. 26.

    Tacconi, L. J. et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature 463, 781–784 (2010).

    ADS  Google Scholar 

  27. 27.

    Fogarty, L. et al. SWIFT observations of the Arp 147 ring galaxy system. Mon. Not. R. Astron. Soc. 417, 853–844 (2011).

    ADS  Google Scholar 

  28. 28.

    Pearson, W. J. et al. Main sequence of star forming galaxies beyond the Herschel confusion limit. Astron. Astrophys. 615, A146 (2018).

    Google Scholar 

  29. 29.

    van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size-mass distribution since z = 3. Astrophys. J. 788, 28 (2014).

    ADS  Google Scholar 

  30. 30.

    Yuan, T.-T. et al. The most ancient spiral galaxy: a 2.6-gyr-old disk with a tranquil velocity field. Astrophys. J. 850, 61 (2017).

    ADS  Google Scholar 

  31. 31.

    Planck Collaboration XVI. et al.Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).

    Google Scholar 

  32. 32.

    Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    ADS  Google Scholar 

  33. 33.

    Grogin, N. A. et al. CANDELS: the cosmic assembly near-infrared deep extragalactic legacy survey. Astrophys. J. 197, 35 (2011).

    Google Scholar 

  34. 34.

    Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts, and stellar masses. Astrophys. J. 214, 24 (2014).

    Google Scholar 

  35. 35.

    Miller, T. B., Gunn, J. E., van Dokkum, P., Mowla, L. & van der Wel, A. A new view of the size-mass distribution of galaxies: using r20 and r80 instead of r50. Astrophys. J. Lett. 872, L14 (2019).

    ADS  Google Scholar 

  36. 36.

    Graham, A. W. & Driver, S. P. A concise reference to (projected) Sérsic R1/n quantities, including concentration, profile slopes, Petrosian indices, and Kron magnitudes. Publ. Astron. Soc. Aus. 22, 118–127 (2005).

    ADS  Google Scholar 

  37. 37.

    de Vaucouleurs, G. et al. Third Reference Catalogue of Bright Galaxies (RC3) (Springer, 1991).

  38. 38.

    Mowla, L., van der Wel, A., van Dokkum, P. & Miller, T. B. A mass-dependent slope of the galaxy size-mass relation out to z ~ 3: further evidence for a direct relation between median galaxy size and median halo mass. Astrophys. J. Lett. 872, L13 (2019).

    ADS  Google Scholar 

  39. 39.

    Juric, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    ADS  Google Scholar 

  40. 40.

    Wegg, C., Gerhard, O. & Portail, M. The structure of the Milky Way’s bar outside the bulge. Mon. Not. R. Astron. Soc. 450, 4050–4069 (2015).

    ADS  Google Scholar 

  41. 41.

    Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    ADS  Google Scholar 

  42. 42.

    Glazebrook, K. The Dawes Review 1: kinematic studies of star-forming galaxies across cosmic time. Publ. Astron. Soc. Aus. 30, 056 (2013).

    ADS  Google Scholar 

  43. 43.

    Giovanelli, R. On the scaling relations of disk galaxies. IAU Symp. 289, 296–303 (2013).

    ADS  Google Scholar 

  44. 44.

    Few, M. A., Madore, B. F. & Arp, H. C. Ring galaxies—I. Kinematics of the southern ring galaxy AM 064-741. Mon. Not. R. Astron. Soc. 199, 633–647 (1982).

    ADS  Google Scholar 

  45. 45.

    Higdon, J. L. Wheels of fire. II. Neutral hydrogen in the Cartwheel ring galaxy. Astrophys. J. 467, 241 (1996).

    ADS  Google Scholar 

  46. 46.

    Higdon, J. L., Higdon, S. J. U. & Rand, R. J. Wheels of fire. IV. Star formation and the neutral interstellar medium in the ring galaxy AM0644-741. Astrophys. J. 739, 97 (2011).

    ADS  Google Scholar 

  47. 47.

    Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009).

    ADS  Google Scholar 

  48. 48.

    Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    ADS  Google Scholar 

  49. 49.

    Tomczak, A. R. et al. The SFR-M* relation and empirical star-formation histories from ZFOURGE at 0.5 < z < 4. Astrophys. J. 817, 118 (2016).

    ADS  Google Scholar 

  50. 50.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Google Scholar 

  51. 51.

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacific 115, 763–795 (2003).

    ADS  Google Scholar 

  52. 52.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Google Scholar 

  53. 53.

    Labbe, I. et al. Spitzer IRAC confirmation of z850-dropout galaxies in the Hubble ultra deep field: stellar masses and ages at z ~ 7. Astrophys. J. Lett. 649, L67–L70 (2006).

    ADS  Google Scholar 

  54. 54.

    Reddy, N. A. et al. The MOSDEF survey: measurements of balmer decrements and the dust attenuation curve at redshifts z1.4 − 2.6. Astrophys. J. 806, 259 (2015).

    ADS  Google Scholar 

  55. 55.

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    ADS  Google Scholar 

  56. 56.

    Steidel, C. C. et al. Strong nebular line ratios in the spectra of z ~ 2−3 star forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. 795, 165 (2014).

    ADS  Google Scholar 

  57. 57.

    Tran, K. V. H. et al. ZFIRE: galaxy cluster kinematics, Hα star formation rates, and gas phase metallicities of XMM-LSS J02182-05102 at zcl = 1.6232. Astrophys. J. 811, 28 (2015).

    ADS  Google Scholar 

  58. 58.

    Crivellari, E., Wolter, A. & Trinchieri, G. The Cartwheel galaxy with XMM-Newton. Astron. Astrophys. 501, 445–453 (2009).

    ADS  Google Scholar 

  59. 59.

    Licquia, T. C. & Newman, J. A. Improved estimates of the Milky Way’s stellar mass and star formation rate from hierarchical Bayesian meta-analysis. Astrophys. J. 806, 96 (2015).

    ADS  Google Scholar 

  60. 60.

    Taylor, E. N. et al. On the masses of galaxies in the local universe. Astrophys. J. 722, 1–19 (2010).

    ADS  Google Scholar 

Download references


This research was supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013.

Author information




T.Y. wrote the manuscript and was the overall lead of the project. A.E. carried out the EAGLE simulation analysis and contributed to the writing of the simulation results. I.L., G.G.K. and C.d.P.L. contributed substantially to the overall science interpretation, data analysis and making of the figures. L.Y.A., J.H.C., K.-V.H.T. and K.G. contributed substantially to the photometric and kinematic data analysis. All other co-authors contributed to the interpretation and data analysis, and assisted with Keck observations. All co-authors commented on this manuscript as part of an internal review process.

Corresponding author

Correspondence to Tiantian Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Ronald J. Buta, Curtis Struck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–4 and notes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Elagali, A., Labbé, I. et al. A giant galaxy in the young Universe with a massive ring. Nat Astron 4, 957–964 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing