Highlights of exoplanetary science from Spitzer

Abstract

Observations of extrasolar planets were not projected to be a substantial part of the Spitzer Space Telescope’s mission when it was conceived and designed. Nevertheless, Spitzer was the first facility to detect thermal emission from a hot Jupiter-sized planet, and the range of its exoplanetary investigations grew to encompass transiting planets, microlensing, brown dwarfs, and direct imaging searches and astrometry. Spitzer used phase curves to measure the longitudinal distribution of heat as well as time-dependent heating on hot Jupiters. Its secondary eclipse observations strongly constrained the dayside thermal emission spectra and corresponding atmospheric compositions of hot Jupiters, and the timings of eclipses were used for studies of orbital dynamics. Spitzer’s sensitivity to carbon-based molecules such as methane and carbon monoxide was key to atmospheric composition studies of transiting exoplanets as well as imaging spectroscopy of brown dwarfs, and complemented Hubble Space Telescope spectroscopy at shorter wavelengths. Its capability for long continuous observing sequences enabled searches for new transiting planets around cool stars and helped to define the architectures of planetary systems such as TRAPPIST-1. Spitzer measured masses for small planets at large orbital distances using microlensing parallax. Spitzer observations of brown dwarfs probed their temperatures, masses and weather patterns. Imaging and astrometry from Spitzer was used to discover new planetary-mass brown dwarfs and to measure distances and space densities of many others.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the techniques used by Spitzer to measure transiting planets.
Fig. 2: Timeline of some major exoplanetary scientific highlights from Spitzer.
Fig. 3: Thermal emission spectra of the two brightest ‘hot Jupiters’.
Fig. 4: Measured versus predicted brightness temperatures.
Fig. 5: Transmission spectrum for the sub-Saturn-mass exoplanet WASP-127 b.
Fig. 6: Structure of an exoplanet phase curve.
Fig. 7: Transit and secondary eclipse (occultation) times for WASP-12 b, showing orbital decay.
Fig. 8: Transits of planets in the TRAPPIST-1 system as observed with Spitzer and ground-based photometry.
Fig. 9: Microlensing light curves for OGLE-2016-BLG-1067.
Fig. 10: Spitzer IRAC photometry of 2MASS J21392216+0220185.

References

  1. 1.

    Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    ADS  Article  Google Scholar 

  2. 2.

    Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I. & Saumon, D. Giant planets at small orbital distances. Astrophys. J. Lett 459, L35 (1996).

    ADS  Article  Google Scholar 

  3. 3.

    Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

    ADS  Article  Google Scholar 

  4. 4.

    Seager, S., Whitney, B. A. & Sasselov, D. D. Photometric light curves and polarization of close-in extrasolar giant planets. Astrophys. J. 540, 504–520 (2000).

    ADS  Article  Google Scholar 

  5. 5.

    Beichman, C. A. & Deming, D. Observing Exoplanets with the Spitzer Space Telescope 78 (Springer, 2018).

  6. 6.

    Chen, C., Su, K. & Xu, S. Spitzer’s debris disk legacy from main-sequence stars to white dwarfs. Nat. Astron. 4, 328–338 (2020).

    ADS  Article  Google Scholar 

  7. 7.

    Burrows, A. et al. A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491, 856–875 (1997).

    ADS  Article  Google Scholar 

  8. 8.

    Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    Sudarsky, D., Burrows, A. & Pinto, P. Albedo and reflection spectra of extrasolar giant planets. Astrophys. J. 538, 885–903 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    Charbonneau, D. et al. Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523–529 (2005).

    ADS  Article  Google Scholar 

  11. 11.

    Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Barman, T. S., Hauschildt, P. H. & Allard, F. Phase-dependent properties of extrasolar planet atmospheres. Astrophys. J. 632, 1132–1139 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Burrows, A., Hubeny, I. & Sudarsky, D. A Theoretical interpretation of the measurements of the secondary eclipses of TrES-1 and HD 209458b. Astrophys. J. Lett. 625, L135–L138 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    Seager, S. et al. On the dayside thermal emission of hot Jupiters. Astrophys. J. 632, 1122–1131 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    Deming, D., Harrington, J., Seager, S. & Richardson, L. J. Strong infrared emission from the extrasolar planet HD 189733b. Astrophys. J. 644, 560–564 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Bouchy, F. et al. ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. Astron. Astrophys. 444, L15–L19 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. Lett 529, L45–L48 (2000).

    ADS  Article  Google Scholar 

  18. 18.

    Crouzet, N., McCullough, P. R., Deming, D. & Madhusudhan, N. Water vapor in the spectrum of the extrasolar planet HD 189733b. II. The eclipse. Astrophys. J. 795, 166 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Knutson, H. A. et al. Multiwavelength constraints on the day–night circulation patterns of HD 189733b. Astrophys. J. 690, 822–836 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Knutson, H. A. et al. 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754, 22 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Kilpatrick, B. M. et al. Evaluating climate variability of the canonical hot Jupiters Hd 189733b & Hd 209458b through multi-epoch eclipse observations. Astron. J. 159, 51 (2020).

    ADS  Article  Google Scholar 

  22. 22.

    Zhang, M., Chachan, Y., Kempton, E. M. R. & Knutson, H. A. Forward modeling and retrievals with PLATON, a fast open-source tool. Publ. Astron. Soc. Pac. 131, 034501 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 18–24 (2004).

    ADS  Article  Google Scholar 

  24. 24.

    Swain, M. R., Bouwman, J., Akeson, R. L., Lawler, S. & Beichman, C. A. The mid-infrared spectrum of the transiting exoplanet HD 209458b. Astrophys. J. 674, 482–497 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Grillmair, C. J. et al. A Spitzer spectrum of the exoplanet HD 189733b. Astrophys. J. Lett. 658, L115–L118 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Richardson, L. J., Deming, D., Horning, K., Seager, S. & Harrington, J. A spectrum of an extrasolar planet. Nature 445, 892–895 (2007).

    ADS  Article  Google Scholar 

  27. 27.

    Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Line, M. R. et al. No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. Astron. J. 152, 203 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Madhusudhan, N. et al. A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature 469, 64–67 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Line, M. R., Knutson, H., Wolf, A. S. & Yung, Y. L. A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. Astrophys. J. 783, 70 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Madhusudhan, N. & Seager, S. On the inference of thermal inversions in hot Jupiter atmospheres. Astrophys. J. 725, 261–274 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Burrows, A., Hubeny, I., Budaj, J., Knutson, H. A. & Charbonneau, D. Theoretical spectral models of the planet HD 209458b with a thermal inversion and water emission bands. Astrophys. J. Lett. 668, L171–L174 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Burrows, A., Ibgui, L. & Hubeny, I. Optical albedo theory of strongly irradiated giant planets: the case of HD 209458b. Astrophys. J. 682, 1277–1282 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009).

    ADS  Article  Google Scholar 

  36. 36.

    Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A. & Megeath, S. T. The 3.6–80 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    Diamond-Lowe, H., Stevenson, K. B., Bean, J. L., Line, M. R. & Fortney, J. J. New analysis indicates no thermal inversion in the atmosphere of HD 209458b. Astrophys. J. 796, 66 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Kreidberg, L. et al. Global climate and atmospheric composition of the ultra-hot Jupiter WASP-103b from HST and Spitzer phase curve observations. Astron. J. 156, 17 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Morley, C. V. et al. Forward and inverse modeling of the emission and transmission spectrum of GJ 436b: investigating metal enrichment, tidal heating, and clouds. Astron. J. 153, 86 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    Stevenson, K. B., Bean, J. L., Madhusudhan, N. & Harrington, J. Deciphering the atmospheric composition of WASP-12b: a comprehensive analysis of its dayside emission. Astrophys. J. 791, 36 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004).

    ADS  Article  Google Scholar 

  44. 44.

    Triaud, A. H. M. J. Colour–magnitude diagrams of transiting exoplanets—I. Systems with parallaxes. Mon. Not. R. Astron. Soc. 439, L61–L64 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Triaud, A. H. M. J., Lanotte, A. A., Smalley, B. & Gillon, M. Colour–magnitude diagrams of transiting exoplanets—II. A larger sample from photometric distances. Mon. Not. R. Astron. Soc. 444, 711–728 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    Triaud, A. H. M. J. et al. WASP-80b has a dayside within the T-dwarf range. Mon. Not. R. Astron. Soc. 450, 2279–2290 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Beatty, T. G. et al. Spitzer phase curves of KELT-1b and the signatures of nightside clouds in thermal phase observations. Astron. J. 158, 166 (2019).

    ADS  Article  Google Scholar 

  48. 48.

    Garhart, E. et al. Statistical characterization of hot Jupiter atmospheres using Spitzer’s secondary eclipses. Astron. J. 159, 137 (2020).

    ADS  Article  Google Scholar 

  49. 49.

    Fortney, J. J., Cooper, C. S., Showman, A. P., Marley, M. S. & Freedman, R. S. The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. Astrophys. J. 652, 746–757 (2006).

    ADS  Article  Google Scholar 

  50. 50.

    Stevenson, K. B. et al. Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature 464, 1161–1164 (2010).

    ADS  Article  Google Scholar 

  51. 51.

    Lanotte, A. A. et al. A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b. Astron. Astrophys. 572, A73 (2014).

    Article  Google Scholar 

  52. 52.

    Kammer, J. A. et al. Spitzer secondary eclipse observations of five cool gas giant planets and empirical trends in cool planet emission spectra. Astrophys. J. 810, 118 (2015).

    ADS  Article  Google Scholar 

  53. 53.

    Wallack, N. L. et al. Investigating trends in atmospheric compositions of cool gas giant planets using Spitzer secondary eclipses. Astron. J. 158, 217 (2019).

    ADS  Article  Google Scholar 

  54. 54.

    Moses, J. I., Madhusudhan, N., Visscher, C. & Freedman, R. S. Chemical consequences of the C/O ratio on hot Jupiters: examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. Astrophys. J. 763, 25 (2013).

    ADS  Article  Google Scholar 

  55. 55.

    Drummond, B. et al. The carbon-to-oxygen ratio: implications for the spectra of hydrogen-dominated exoplanet atmospheres. Mon. Not. R. Astron. Soc. 486, 1123–1137 (2019).

    ADS  Article  Google Scholar 

  56. 56.

    Kreidberg, L. et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. Lett. 793, L27 (2014).

    ADS  Article  Google Scholar 

  57. 57.

    Wakeford, H. R. et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017).

    ADS  Article  Google Scholar 

  58. 58.

    Spake, J. J. et al. A super-solar metallicity atmosphere for WASP-127b revealed by transmission spectroscopy from HST and Spitzer. Preprint at https://arxiv.org/abs/1911.08859 (2019).

  59. 59.

    Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    ADS  Article  Google Scholar 

  60. 60.

    Thorngren, D. & Fortney, J. J. Connecting giant planet atmosphere and interior modeling: constraints on atmospheric metal enrichment. Astrophys. J. Lett. 874, L31 (2019).

    ADS  Article  Google Scholar 

  61. 61.

    Fortney, J. J. et al. A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775, 80 (2013).

    ADS  Article  Google Scholar 

  62. 62.

    Blumenthal, S. D. et al. A comparison of simulated JWST observations derived from equilibrium and non-equilibrium chemistry models of giant exoplanets. Astrophys. J. 853, 138 (2018).

    ADS  Article  Google Scholar 

  63. 63.

    Bean, J. L. et al. The transiting exoplanet community early release science program for JWST. Publ. Astron. Soc. Pac. 130, 114402 (2018).

    ADS  Article  Google Scholar 

  64. 64.

    Schlawin, E., Greene, T. P., Line, M., Fortney, J. J. & Rieke, M. Clear and cloudy exoplanet forecasts for JWST: maps, retrieved composition, and constraints on formation with MIRI and NIRCam. Astron. J. 156, 40 (2018).

    ADS  Article  Google Scholar 

  65. 65.

    Drummond, B. et al. Observable signatures of wind-driven chemistry with a fully consistent three-dimensional radiative hydrodynamics model of HD 209458b. Astrophys. J. Lett. 855, L31 (2018).

    ADS  Article  Google Scholar 

  66. 66.

    Öberg, K. I. & Bergin, E. A. Excess C/O and C/H in outer protoplanetary disk gas. Astrophys. J. Lett. 831, L19 (2016).

    ADS  Article  Google Scholar 

  67. 67.

    Eistrup, C., Walsh, C. & van Dishoeck, E. F. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes. Astron. Astrophys. 613, A14 (2018).

    Article  Google Scholar 

  68. 68.

    Mollière, P., van Boekel, R., Dullemond, C., Henning, T. & Mordasini, C. Model atmospheres of irradiated exoplanets: the influence of stellar parameters, metallicity, and the C/O ratio. Astrophys. J. 813, 47 (2015).

    ADS  Article  Google Scholar 

  69. 69.

    Helling, C., Tootill, D., Woitke, P. & Lee, G. Dust in brown dwarfs and extrasolar planets. V. Cloud formation in carbon- and oxygen-rich environments. Astron. Astrophys. 603, A123 (2017).

    ADS  Article  Google Scholar 

  70. 70.

    Hebb, L. et al. WASP-12b: the hottest transiting extrasolar planet yet discovered. Astrophys. J. 693, 1920–1928 (2009).

    ADS  Article  Google Scholar 

  71. 71.

    Kreidberg, L. et al. A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814, 66 (2015).

    ADS  Article  Google Scholar 

  72. 72.

    Oreshenko, M. et al. Retrieval analysis of the emission spectrum of WASP-12b: sensitivity of outcomes to prior assumptions and implications for formation history. Astrophys. J. Lett. 847, L3 (2017).

    ADS  Article  Google Scholar 

  73. 73.

    Ehrenreich, D. et al. Near-infrared transmission spectrum of the warm-Uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope. Astron. Astrophys. 570, A89 (2014).

    Article  Google Scholar 

  74. 74.

    Stevenson, K. B. et al. Transmission spectroscopy of the hot Jupiter WASP-12b from 0.7 to 5 μm. Astron. J. 147, 161 (2014).

    ADS  Article  Google Scholar 

  75. 75.

    Nikolov, N. et al. HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b. Mon. Not. R. Astron. Soc. 447, 463–478 (2015).

    ADS  Article  Google Scholar 

  76. 76.

    Fischer, P. D. et al. HST hot-Jupiter transmission spectral survey: clear skies for cool Saturn WASP-39b. Astrophys. J. 827, 19 (2016).

    ADS  Article  Google Scholar 

  77. 77.

    Alam, M. K. et al. The HST PanCET program: hints of Na I and evidence of a cloudy atmosphere for the inflated hot Jupiter WASP-52b. Astron. J. 156, 298 (2018).

    ADS  Article  Google Scholar 

  78. 78.

    Ducrot, E. et al. The 0.8–45 μm broadband transmission spectra of TRAPPIST-1 planets. Astron. J. 156, 218 (2018).

    ADS  Article  Google Scholar 

  79. 79.

    Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).

    ADS  Article  Google Scholar 

  80. 80.

    Sotzen, K. S. et al. Transmission spectroscopy of WASP-79b from 0.6 to 5.0 μm. Astron. J. 159, 5 (2020).

    ADS  Article  Google Scholar 

  81. 81.

    Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R. & Walsh, K. J. in Protostars and Planets VI (eds Beuther, H. et al.) 595 (Univ. Arizona Press, 2014).

  82. 82.

    Demory, B.-O. et al. Detection of thermal emission from a super-Earth. Astrophys. J. Lett. 751, L28 (2012).

    ADS  Article  Google Scholar 

  83. 83.

    Seager, S. & Deming, D. On the method to infer an atmosphere on a tidally locked super Earth exoplanet and upper limits to GJ 876d. Astrophys. J. 703, 1884–1889 (2009).

    ADS  Article  Google Scholar 

  84. 84.

    Demory, B.-O. et al. A map of the large day–night temperature gradient of a super-Earth exoplanet. Nature 532, 207–209 (2016).

    ADS  Article  Google Scholar 

  85. 85.

    Kreidberg, L. et al. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573, 87–90 (2019).

    ADS  Article  Google Scholar 

  86. 86.

    Demory, B.-O., Gillon, M., Madhusudhan, N. & Queloz, D. Variability in the super-Earth 55 Cnc e. Mon. Not. R. Astron. Soc. 455, 2018–2027 (2016).

    ADS  Article  Google Scholar 

  87. 87.

    Tamburo, P., Mandell, A., Deming, D. & Garhart, E. Confirming variability in the secondary eclipse depth of the super-Earth 55 Cancri e. Astron. J. 155, 221 (2018).

    ADS  Article  Google Scholar 

  88. 88.

    Cowan, N. B. & Agol, E. Inverting phase functions to map exoplanets. Astrophys. J. Lett 678, L129 (2008).

    ADS  Article  Google Scholar 

  89. 89.

    Parmentier, V. & Crossfield, I. J. M. in Handbook of Exoplanets (Deeg, H. & Belmote, J.) 116 (Springer, 2018).

  90. 90.

    Harrington, J. et al. The phase-dependent infrared brightness of the extrasolar planet υ Andromedae b. Science 314, 623–626 (2006).

    ADS  Article  Google Scholar 

  91. 91.

    Cowan, N. B., Agol, E. & Charbonneau, D. Hot nights on extrasolar planets: mid-infrared phase variations of hot Jupiters. Mon. Not. R. Astron. Soc. 379, 641–646 (2007).

    ADS  Article  Google Scholar 

  92. 92.

    Knutson, H. A. et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007).

    ADS  Article  Google Scholar 

  93. 93.

    Knutson, H. A. et al. The 8 μm phase variation of the hot Saturn HD 149026b. Astrophys. J. 703, 769–784 (2009).

    ADS  Article  Google Scholar 

  94. 94.

    Cowan, N. B. et al. Thermal phase variations of WASP-12b: defying predictions. Astrophys. J. 747, 82 (2012).

    ADS  Article  Google Scholar 

  95. 95.

    Lewis, N. K. et al. Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766, 95 (2013).

    ADS  Article  Google Scholar 

  96. 96.

    Maxted, P. F. L. et al. Spitzer 3.6 and 4.5 μm full-orbit light curves of WASP-18. Mon. Not. R. Astron. Soc. 428, 2645–2660 (2013).

    ADS  Article  Google Scholar 

  97. 97.

    Lewis, N. K., Showman, A. P., Fortney, J. J., Knutson, H. A. & Marley, M. S. Atmospheric circulation of eccentric hot Jupiter HAT-P-2b. Astrophys. J. 795, 150 (2014).

    ADS  Article  Google Scholar 

  98. 98.

    Shporer, A. et al. Atmospheric characterization of the hot Jupiter Kepler-13Ab. Astrophys. J. 788, 92 (2014).

    ADS  Article  Google Scholar 

  99. 99.

    Wong, I. et al. Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter XO-3b. Astrophys. J. 794, 134 (2014).

    ADS  Article  Google Scholar 

  100. 100.

    Zellem, R. T. et al. The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b. Astrophys. J. 790, 53 (2014).

    ADS  Article  Google Scholar 

  101. 101.

    Wong, I. et al. 3.6 and 4.5 μm phase curves of the highly irradiated eccentric hot Jupiter WASP-14b. Astrophys. J. 811, 122 (2015).

    ADS  Article  Google Scholar 

  102. 102.

    Wong, I. et al. 3.6 and 4.5 μm Spitzer phase curves of the highly irradiated hot Jupiters WASP-19b and HAT-P-7b. Astrophys. J. 823, 122 (2016).

    ADS  Article  Google Scholar 

  103. 103.

    Krick, J. E. et al. Spitzer IRAC sparsely sampled phase curve of the exoplanet WASP-14B. Astrophys. J. 824, 27 (2016).

    ADS  Article  Google Scholar 

  104. 104.

    Stevenson, K. B. et al. Spitzer phase curve constraints for WASP-43b at 3.6 and 4.5 μm. Astron. J. 153, 68 (2017).

    ADS  Article  Google Scholar 

  105. 105.

    Zhang, M. et al. Phase curves of WASP-33b and HD 149026b and a new correlation between phase curve offset and irradiation temperature. Astron. J. 155, 83 (2018).

    ADS  Article  Google Scholar 

  106. 106.

    Dang, L. et al. Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b. Nat. Astron. 2, 220–227 (2018).

    ADS  Article  Google Scholar 

  107. 107.

    Mendonça, J. M., Malik, M., Demory, B.-O. & Heng, K. Revisiting the phase curves of WASP-43b: confronting re-analyzed Spitzer data with cloudy atmospheres. Astron. J. 155, 150 (2018).

    ADS  Article  Google Scholar 

  108. 108.

    Rauscher, E., Suri, V. & Cowan, N. B. A More informative map: inverting thermal orbital phase and eclipse light curves of exoplanets. Astron. J. 156, 235 (2018).

    ADS  Article  Google Scholar 

  109. 109.

    Steinrueck, M. E., Parmentier, V., Showman, A. P., Lothringer, J. D. & Lupu, R. E. The effect of 3D transport-induced disequilibrium carbon chemistry on the atmospheric structure, phase curves, and emission spectra of hot Jupiter HD 189733b. Astrophys. J. 880, 14 (2019).

    ADS  Article  Google Scholar 

  110. 110.

    Heng, K. & Showman, A. P. Atmospheric dynamics of hot exoplanets. Annu. Rev. Earth Planet. Sci. 43, 509–540 (2015).

    ADS  Article  Google Scholar 

  111. 111.

    Showman, A. P., Cooper, C. S., Fortney, J. J. & Marley, M. S. Atmospheric circulation of hot Jupiters: three-dimensional circulation models of HD 209458b and HD 189733b with simplified forcing. Astrophys. J. 682, 559–576 (2008).

    ADS  Article  Google Scholar 

  112. 112.

    Rauscher, E. & Menou, K. A General circulation model for gaseous exoplanets with double-gray radiative transfer. Astrophys. J. 750, 96 (2012).

    ADS  Article  Google Scholar 

  113. 113.

    Dobbs-Dixon, I. & Agol, E. Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b. Mon. Not. R. Astron. Soc. 435, 3159–3168 (2013).

    ADS  Article  Google Scholar 

  114. 114.

    Komacek, T. D. & Showman, A. P. Atmospheric circulation of hot Jupiters: dayside–nightside temperature differences. Astrophys. J. 821, 16 (2016).

    ADS  Article  Google Scholar 

  115. 115.

    Komacek, T. D., Showman, A. P. & Tan, X. Atmospheric circulation of hot Jupiters: dayside–nightside temperature differences. II. Comparison with observations. Astrophys. J. 835, 198 (2017).

    Google Scholar 

  116. 116.

    Tan, X. & Komacek, T. D. The atmospheric circulation of ultra-hot Jupiters. Astrophys. J. 886, 26 (2019).

    ADS  Article  Google Scholar 

  117. 117.

    Cowan, N. B. & Agol, E. A Model for thermal phase variations of circular and eccentric exoplanets. Astrophys. J. 726, 82 (2011).

    ADS  Article  Google Scholar 

  118. 118.

    Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013).

    ADS  Article  Google Scholar 

  119. 119.

    Keating, D., Cowan, N. B. & Dang, L. Uniformly hot nightside temperatures on short-period gas giants. Nat. Astron. 3, 1092–1098 (2019).

    ADS  Article  Google Scholar 

  120. 120.

    Parmentier, V. et al. From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context. Astron. Astrophys. 617, A110 (2018).

    Article  Google Scholar 

  121. 121.

    Arcangeli, J. et al. H opacity and water dissociation in the dayside atmosphere of the very hot gas giant WASP-18b. Astrophys. J. Lett. 855, L30 (2018).

    ADS  Article  Google Scholar 

  122. 122.

    Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H opacity, and thermal dissociation of molecules. Astrophys. J. 866, 27 (2018).

    ADS  Article  Google Scholar 

  123. 123.

    Sheppard, K. B. et al. Evidence for a dayside thermal inversion and high metallicity for the hot Jupiter WASP-18b. Astrophys. J. Lett. 850, L32 (2017).

    ADS  Article  Google Scholar 

  124. 124.

    Mansfield, M. et al. An HST/WFC3 thermal emission spectrum of the hot Jupiter HAT-P-7b. Astron. J. 156, 10 (2018).

    ADS  Article  Google Scholar 

  125. 125.

    Bell, T. J. et al. Mass loss from the exoplanet WASP-12b inferred from Spitzer phase curves. Mon. Not. R. Astron. Soc. 489, 1995–2013 (2019).

    ADS  Article  Google Scholar 

  126. 126.

    Fossey, S. J., Waldmann, I. P. & Kipping, D. M. Detection of a transit by the planetary companion of HD 80606. Mon. Not. R. Astron. Soc. 396, L16–L20 (2009).

    ADS  Article  Google Scholar 

  127. 127.

    Laughlin, G. et al. Rapid heating of the atmosphere of an extrasolar planet. Nature 457, 562–564 (2009).

    ADS  Article  Google Scholar 

  128. 128.

    deWit, J. et al. Direct measure of radiative and dynamical properties of an exoplanet atmosphere. Astrophys. J. Lett. 820, L33 (2016).

  129. 129.

    Cowan, N. B. & Agol, E. The statistics of albedo and heat recirculation on hot exoplanets. Astrophys. J. 729, 54 (2011).

  130. 130.

    Schwartz, J. C. & Cowan, N. B. Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers. Mon. Not. R. Astron. Soc. 449, 4192–4203 (2015).

  131. 131.

    Schwartz, J. C., Kashner, Z., Jovmir, D. & Cowan, N. B. Phase offsets and the energy budgets of hot Jupiters. Astrophys. J. 850, 154 (2017).

  132. 132.

    Williams, P. K. G., Charbonneau, D., Cooper, C. S., Showman, A. P. & Fortney, J. J. Resolving the surfaces of extrasolar planets with secondary eclipse light curves. Astrophys. J. 649, 1020–1027 (2006).

    ADS  Article  Google Scholar 

  133. 133.

    Agol, E. et al. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721, 1861–1877 (2010).

    ADS  Article  Google Scholar 

  134. 134.

    de Wit, J., Gillon, M., Demory, B. O. & Seager, S. Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. Astron. Astrophys. 548, A128 (2012).

    Article  Google Scholar 

  135. 135.

    Majeau, C., Agol, E. & Cowan, N. B. A Two-dimensional infrared map of the extrasolar planet HD 189733b. Astrophys. J. Lett. 747, L20 (2012).

    ADS  Article  Google Scholar 

  136. 136.

    Komacek, T. D. & Showman, A. P. Temporal variability in hot Jupiter atmospheres. Astrophys. J. 888, 2 (2020).

    ADS  Article  Google Scholar 

  137. 137.

    Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).

    ADS  Article  Google Scholar 

  138. 138.

    Deming, D. et al. Spitzer transit and secondary eclipse photometry of GJ 436b. Astrophys. J. Lett. 667, L199––L202 (2007).

    ADS  Article  Google Scholar 

  139. 139.

    Blecic, J. et al. Thermal emission of WASP-14b revealed with three Spitzer eclipses. Astrophys. J. 779, 5 (2013).

    ADS  Article  Google Scholar 

  140. 140.

    Knutson, H. A. et al. Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets. Astrophys. J. 785, 126 (2014).

    ADS  Article  Google Scholar 

  141. 141.

    Knutson, H. A., Charbonneau, D., Burrows, A., O’Donovan, F. T. & Mandushev, G. Detection of a temperature inversion in the broadband infrared emission spectrum of TrES-4. Astrophys. J. 691, 866–874 (2009).

    ADS  Article  Google Scholar 

  142. 142.

    Todorov, K. et al. Spitzer IRAC secondary eclipse photometry of the transiting extrasolar planet HAT-P-1b. Astrophys. J. 708, 498–504 (2010).

    ADS  Article  Google Scholar 

  143. 143.

    Deming, D. et al. Warm Spitzer photometry of the transiting exoplanets CoRoT-1 and CoRoT-2 at secondary eclipse. Astrophys. J. 726, 95 (2011).

    ADS  Article  Google Scholar 

  144. 144.

    Winn, J. N. in Exoplanets (ed. Seager, S.) 55–77 (Univ. Arizona Press, 2010).

  145. 145.

    Batygin, K., Bodenheimer, P. & Laughlin, G. Determination of the interior structure of transiting planets in multiple-planet systems. Astrophys. J. Lett. 704, L49––L53 (2009).

    ADS  Article  Google Scholar 

  146. 146.

    Buhler, P. B. et al. Dynamical constraints on the core mass of hot Jupiter HAT-P-13b. Astrophys. J. 821, 26 (2016).

    ADS  Article  Google Scholar 

  147. 147.

    Hardy, R. A. et al. Secondary eclipses of HAT-P-13b. Astrophys. J. 836, 143 (2017).

    ADS  Article  Google Scholar 

  148. 148.

    Patra, K. C. et al. The apparently decaying orbit of WASP-12b. Astron. J. 154, 4 (2017).

    ADS  Article  Google Scholar 

  149. 149.

    Yee, S. W. et al. The orbit of WASP-12b is decaying. Astrophys. J. Lett. 888, L5 (2020).

    ADS  Article  Google Scholar 

  150. 150.

    Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    ADS  Article  Google Scholar 

  151. 151.

    Charbonneau, D. et al. A super-Earth transiting a nearby low-mass star. Nature 462, 891–894 (2009).

    ADS  Article  Google Scholar 

  152. 152.

    Fraine, J. D. et al. Spitzer transits of the super-Earth GJ1214b and implications for its atmosphere. Astrophys. J. 765, 127 (2013).

    ADS  Article  Google Scholar 

  153. 153.

    Gillon, M. et al. Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214. Astron. Astrophys. 563, A21 (2014).

    Article  Google Scholar 

  154. 154.

    Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).

    ADS  Article  Google Scholar 

  155. 155.

    Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    ADS  Article  Google Scholar 

  156. 156.

    de Wit, J. et al. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nat. Astron. 2, 214–219 (2018).

    ADS  Article  Google Scholar 

  157. 157.

    Ducrot, E. et al. The 0.8–45 μm broadband transmission spectra of TRAPPIST-1 planets. Astron. J. 156, 218 (2018).

    ADS  Article  Google Scholar 

  158. 158.

    Lincowski, A. P. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018).

    ADS  Article  Google Scholar 

  159. 159.

    Hu, R., Peterson, L. & Wolf, E. T. O2- and CO-rich atmospheres for potentially habitable environments on TRAPPIST-1 planets. Astrophys. J. 888, 122 (2020).

    ADS  Article  Google Scholar 

  160. 160.

    Dobos, V., Barr, A. C. & Kiss, L. L. Tidal heating and the habitability of the TRAPPIST-1 exoplanets. Astron. Astrophys. 624, A2 (2019).

    ADS  Article  Google Scholar 

  161. 161.

    Kislyakova, K. G. et al. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nat. Astron. 1, 878–885 (2017).

    ADS  Article  Google Scholar 

  162. 162.

    Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).

    ADS  Article  Google Scholar 

  163. 163.

    Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).

    ADS  Article  Google Scholar 

  164. 164.

    Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005).

    ADS  Article  Google Scholar 

  165. 165.

    Agol, E. & Fabrycky, D. C.in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J.A.) 797–816 (Springer, 2018).

  166. 166.

    Luger, R., Lustig-Yaeger, J. & Agol, E. Planet–planet occultations in TRAPPIST-1 and other exoplanet systems. Astrophys. J. 851, 94 (2017).

    ADS  Article  Google Scholar 

  167. 167.

    Delrez, L. et al. Early 2017 observations of TRAPPIST-1 with Spitzer. Mon. Not. R. Astron. Soc. 475, 3577–3597 (2018).

    ADS  Article  Google Scholar 

  168. 168.

    Grimm, S. L. et al. The nature of the TRAPPIST-1 exoplanets. Astron. Astrophys. 613, A68 (2018).

    Article  Google Scholar 

  169. 169.

    Dorn, C., Mosegaard, K., Grimm, S. L. & Alibert, Y. Interior characterization in multiplanetary systems: TRAPPIST-1. Astrophys. J. 865, 20 (2018).

    ADS  Article  Google Scholar 

  170. 170.

    Richardson, L. J., Harrington, J., Seager, S. & Deming, D. A Spitzer infrared radius for the transiting extrasolar planet HD 209458b. Astrophys. J. 649, 1043–1047 (2006).

    ADS  Article  Google Scholar 

  171. 171.

    Nutzman, P. et al. A precise estimate of the radius of the exoplanet HD 149026b from Spitzer photometry. Astrophys. J. 692, 229–235 (2009).

    ADS  Article  Google Scholar 

  172. 172.

    Gillon, M. et al. Improved precision on the radius of the nearby super-Earth 55 Cnc e. Astron. Astrophys. 539, A28 (2012).

    Article  Google Scholar 

  173. 173.

    Demory, B. O. et al. Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer. Astron. Astrophys. 533, A114 (2011).

    Article  Google Scholar 

  174. 174.

    Ballard, S. et al. Kepler-93b: a terrestrial world measured to within 120 km, and a test case for a new Spitzer observing mode. Astrophys. J. 790, 12 (2014).

    ADS  Article  Google Scholar 

  175. 175.

    Chen, G. et al. An improved transit measurement for a 2.4 R planet orbiting a bright mid-M dwarf K2–28. Astron. J. 155, 223 (2018).

    ADS  Article  Google Scholar 

  176. 176.

    Hébrard, G. et al. Observation of the full 12-hour-long transit of the exoplanet HD 80606b. Warm-Spitzer photometry and SOPHIE spectroscopy. Astron. Astrophys. 516, A95 (2010).

    Article  Google Scholar 

  177. 177.

    Fraine, J. et al. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature 513, 526–529 (2014).

    ADS  Article  Google Scholar 

  178. 178.

    Morris, B. M., Agol, E., Hebb, L. & Hawley, S. L. Robust transiting exoplanet radii in the presence of starspots from ingress and egress durations. Astron. J. 156, 91 (2018).

    ADS  Article  Google Scholar 

  179. 179.

    Gillon, M. et al. Detection of transits of the nearby hot Neptune GJ 436 b. Astron. Astrophys. 472, L13–L16 (2007).

    ADS  Article  Google Scholar 

  180. 180.

    Beichman, C. et al. Spitzer observations of exoplanets discovered with the Kepler K2 mission. Astrophys. J. 822, 39 (2016).

    ADS  Article  Google Scholar 

  181. 181.

    Benneke, B. et al. Spitzer observations confirm and rescue the habitable-zone super-Earth K2–18b for future characterization. Astrophys. J. 834, 187 (2017).

    ADS  Article  Google Scholar 

  182. 182.

    Berardo, D. et al. Revisiting the HIP 41378 system with K2 and Spitzer. Astron. J. 157, 185 (2019).

    ADS  Article  Google Scholar 

  183. 183.

    Dalba, P. A. & Tamburo, P. Spitzer detection of the transiting Jupiter-analog exoplanet Kepler-167e. Astrophys. J. Lett. 873, L17 (2019).

    ADS  Article  Google Scholar 

  184. 184.

    Livingston, J. H. et al. Spitzer transit follow-up of planet candidates from the K2 mission. Astron. J. 157, 102 (2019).

    ADS  Article  Google Scholar 

  185. 185.

    Janson, M. et al. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ε Eridani. Astron. Astrophys. 574, A120 (2015).

    Article  Google Scholar 

  186. 186.

    Durkan, S., Janson, M. & Carson, J. C. High contrast imaging with Spitzer: constraining the frequency of giant planets out to 1000 au separations. Astrophys. J. 824, 58 (2016).

    ADS  Article  Google Scholar 

  187. 187.

    Leggett, S. K. et al. Properties of the T8.5 dwarf Wolf 940 B. Astrophys. J. 720, 252–258 (2010).

    ADS  Article  Google Scholar 

  188. 188.

    Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the coolest known brown dwarf. Astrophys. J. Lett. 730, L9 (2011).

    ADS  Article  Google Scholar 

  189. 189.

    Luhman, K. L. et al. Confirmation of one of the coldest known brown dwarfs. Astrophys. J. 744, 135 (2012).

    ADS  Article  Google Scholar 

  190. 190.

    Gould, A. Microlens parallaxes with SIRTF. Astrophys. J. 514, 869–877 (1999).

    ADS  Article  Google Scholar 

  191. 191.

    Gaudi, B. S. Microlensing surveys for exoplanets. Annu. Rev. Astron. Astrophys. 50, 411–453 (2012).

    ADS  Article  Google Scholar 

  192. 192.

    Street, R. A. et al. Spitzer parallax of OGLE-2015-BLG-0966: a cold Neptune in the Galactic Disk. Astrophys. J. 819, 93 (2016).

    ADS  Article  Google Scholar 

  193. 193.

    Ryu, Y. H. et al. OGLE-2016-BLG-1190Lb: the first Spitzer bulge planet lies near the planet/brown-dwarf boundary. Astron. J. 155, 40 (2018).

    ADS  Article  Google Scholar 

  194. 194.

    Shvartzvald, Y. et al. An Earth-mass planet in a 1 au orbit around an ultracool dwarf. Astrophys. J. Lett. 840, L3 (2017).

    ADS  Article  Google Scholar 

  195. 195.

    Shvartzvald, Y. et al. The first simultaneous microlensing observations by two space telescopes: Spitzer and Swift reveal a brown dwarf in event OGLE-2015-BLG-1319. Astrophys. J. 831, 183 (2016).

    ADS  Article  Google Scholar 

  196. 196.

    Calchi Novati, S. et al. Spitzer microlensing parallax for OGLE-2016-BLG-1067: a sub-Jupiter orbiting an M dwarf in the disk. Astron. J. 157, 121 (2019).

    ADS  Article  Google Scholar 

  197. 197.

    Udalski, A. et al. Spitzer as a microlens parallax satellite: mass measurement for the OGLE-2014-BLG-0124L planet and its host star. Astrophys. J. 799, 237 (2015).

    ADS  Article  Google Scholar 

  198. 198.

    Gould, A. et al. KMT-2018-BLG-0029Lb: A very low mass-ratio Spitzer microlens planet. J. Korean Astron. Soc. 53, 9–26 (2020).

    ADS  Google Scholar 

  199. 199.

    Dang, L., Calchi Novati, S. & Carey, S. Getting better at measuring the galactic distribution of planets with Spitzer. In AAS/Division for Extreme Solar Systems Abstracts Vol. 51, 03 (2019)..

  200. 200.

    Nielsen, E. L. et al. The Gemini Planet Imager Exoplanet Survey: giant planet and brown dwarf demographics from 10 to 100 au. Astron. J. 158, 13 (2019).

    ADS  Article  Google Scholar 

  201. 201.

    Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels. Astron. J. 159, 63 (2020).

    ADS  Article  Google Scholar 

  202. 202.

    Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

    ADS  Article  Google Scholar 

  203. 203.

    Kouwenhoven, M. B. N., Li, Y., Stamatellos, D. & Goodwin, S. P. Circumstellar disk fragmentation and the origin of massive planetary companions, brown dwarfs, and very low-mass stars. In IAU Symp. Vol. 345 (eds Elmegreen, B. G. et al.) 239–240 (IAU, 2020).

  204. 204.

    Kirkpatrick, J. D. et al. Discovery of the Y1 dwarf WISE J064723.23–6232355. Astrophys. J. 776, 128 (2013).

    ADS  Article  Google Scholar 

  205. 205.

    Martin, E. C. et al. Y dwarf trigonometric parallaxes from the Spitzer Space Telescope. Astrophys. J. 867, 109 (2018).

    ADS  Article  Google Scholar 

  206. 206.

    Kirkpatrick, J. D. et al. Preliminary trigonometric parallaxes of 184 late-T and Y dwarfs and an analysis of the field substellar mass function into the ‘planetary’ mass regime. Astrophys. J. Suppl. 240, 19 (2019).

    ADS  Article  Google Scholar 

  207. 207.

    Beichman, C. et al. WISE Y dwarfs as probes of the brown dwarf-exoplanet connection. Astrophys. J. 783, 68 (2014).

    ADS  Article  Google Scholar 

  208. 208.

    Leggett, S. K., Tremblin, P., Esplin, T. L., Luhman, K. L. & Morley, C. V. The Y-type brown dwarfs: estimates of mass and age from new astrometry, homogenized photometry, and near-infrared spectroscopy. Astrophys. J. 842, 118 (2017).

    ADS  Article  Google Scholar 

  209. 209.

    Morley, C. V. et al. Measuring the D/H ratios of exoplanets and brown dwarfs. Astrophys. J. Lett. 882, L29 (2019).

    ADS  Article  Google Scholar 

  210. 210.

    Roellig, T. L. et al. Spitzer Infrared Spectrograph (IRS) observations of M, L, and T dwarfs. Astrophys. J. Suppl. 154, 418–421 (2004).

    ADS  Article  Google Scholar 

  211. 211.

    Cushing, M. C. et al. A Spitzer Infrared Spectrograph spectral sequence of M, L, and T dwarfs. Astrophys. J. 648, 614–628 (2006).

    ADS  Article  Google Scholar 

  212. 212.

    Leggett, S. K. et al. The physical properties of four 600 K T dwarfs. Astrophys. J. 695, 1517–1526 (2009).

    ADS  Article  Google Scholar 

  213. 213.

    Saumon, D. et al. Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D. Astrophys. J. 647, 552–557 (2006).

    ADS  Article  Google Scholar 

  214. 214.

    Patten, B. M. et al. Spitzer IRAC photometry of M, L, and T dwarfs. Astrophys. J. 651, 502–516 (2006).

    ADS  Article  Google Scholar 

  215. 215.

    Burningham, B. et al. 76 T dwarfs from the UKIDSS LAS: benchmarks, kinematics and an updated space density. Mon. Not. R. Astron. Soc. 433, 457–497 (2013).

    ADS  Article  Google Scholar 

  216. 216.

    Beatty, T. G. et al. Spitzer and z′ secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. Astrophys. J. 783, 112 (2014).

    ADS  Article  Google Scholar 

  217. 217.

    Esplin, T. L. et al. Photometric monitoring of the coldest known brown dwarf with the Spitzer Space Telescope. Astrophys. J. 832, 58 (2016).

    ADS  Article  Google Scholar 

  218. 218.

    Morales-Calderón, M. et al. A sensitive search for variability in late L dwarfs: the quest for weather. Astrophys. J. 653, 1454–1463 (2006).

    ADS  Article  Google Scholar 

  219. 219.

    Artigau, É., Bouchard, S., Doyon, R. & Lafrenière, D. Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: evidence for evolving weather patterns. Astrophys. J. 701, 1534–1539 (2009).

    ADS  Article  Google Scholar 

  220. 220.

    Buenzli, E. et al. Vertical atmospheric structure in a variable brown dwarf: pressure-dependent phase shifts in simultaneous Hubble Space Telescope–Spitzer light curves. Astrophys. J. Lett. 760, L31 (2012).

    ADS  Article  Google Scholar 

  221. 221.

    Apai, D. et al. HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. Astrophys. J. 768, 121 (2013).

    ADS  Article  Google Scholar 

  222. 222.

    Yang, H. et al. Extrasolar storms: pressure-dependent changes in light-curve phase in brown dwarfs from simultaneous HST and Spitzer observations. Astrophys. J. 826, 8 (2016).

    ADS  Article  Google Scholar 

  223. 223.

    Leggett, S. K. et al. Observed variability at 1 and 4 μm in the Y0 brown dwarf WISEP J173835.52+273258.9. Astrophys. J. 830, 141 (2016).

    ADS  Article  Google Scholar 

  224. 224.

    Biller, B. A. et al. Simultaneous multiwavelength variability characterization of the free-floating planetary-mass object PSO J318.5–22. Astron. J. 155, 95 (2018).

    ADS  Article  Google Scholar 

  225. 225.

    Vos, J. M., Allers, K. N. & Biller, B. A. The viewing geometry of brown dwarfs influences their observed colors and variability amplitudes. Astrophys. J. 842, 78 (2017).

    ADS  Article  Google Scholar 

  226. 226.

    Apai, D. et al. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres. Science 357, 683–687 (2017).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  227. 227.

    Carey, S. J. et al. Improvements to warm IRAC/Spitzer Space Telescope operations. In American Astronomical Soc. Meeting Abstracts Vol. 218, 331.11 (AAS, 2011)..

  228. 228.

    Ingalls, J. G. et al. Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC). Proc. SPIE 8442, 84421Y (2012).

  229. 229.

    Carey, S., Ingalls, J., Grillmair, C. & Krick, J. Challenges in data analysis of Spitzer exoplanet observations. In Astronomical Data Analysis Software and Systems XXIII (eds Manset, N. & Forshay, P.) 407 (2014).

  230. 230.

    Grillmair, C. J., Carey, S. J., Stauffer, J. R. & Ingalls, J. G. Improving our understanding of the Spitzer Space Telescope’s pointing drifts. Proc. SPIE 9143, 914359 (2014).

    Article  Google Scholar 

  231. 231.

    Ingalls, J. G. et al. Spitzer/IRAC precision photometry: a machine learning approach. Proc. SPIE 10698, 106985E (2018).

    Google Scholar 

  232. 232.

    Ingalls, J. G. et al. Repeatability and accuracy of exoplanet eclipse depths measured with post-cryogenic Spitzer. Astron. J. 152, 44 (2016).

    ADS  Article  Google Scholar 

  233. 233.

    Todorov, K. O., Deming, D., Burrows, A. & Grillmair, C. J. Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b. Astrophys. J. 796, 100 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Marley for his comments on the brown dwarf section and E. Agol for his comments on the TRAPPIST-1 masses. We thank Y. Chachan, N. Wallack and M. Zhang for making figures.

Author information

Affiliations

Authors

Contributions

Both authors worked on writing the text and selecting the figures and references.

Corresponding authors

Correspondence to Drake Deming or Heather A. Knutson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Charles Beichman for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deming, D., Knutson, H.A. Highlights of exoplanetary science from Spitzer. Nat Astron 4, 453–466 (2020). https://doi.org/10.1038/s41550-020-1100-9

Download citation