Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The global current systems of the Martian induced magnetosphere


Induced magnetospheres form around conductive non-magnetized planetary objects (such as the ionospheres of Mars, Venus, Titan, Pluto and comets) in the electrodynamic interaction with a magnetized flowing plasma, such as the solar wind. The resulting induced currents couple the ionosphere and the deflected plasma, thus they provide insight into the solar wind’s role in powering the heating, escape and evolution of planetary atmospheres. In contrast to the analogous current systems in intrinsic magnetospheres, which were mapped decades ago at Earth, the current systems of induced magnetospheres are largely unexplored. Here, we use five years of magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter to empirically map the current systems of the Martian induced magnetosphere. We find unexpected features, in particular: coupling of the ionosphere and the bow shock, asymmetries between the north–south electric hemispheres and a twist in the near-Mars current system. The current flow pattern in the induced magnetosphere of Mars indicates a system driven by a magnetospheric convective electric field, powered by the solar wind interaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Slices through the three-dimensional map of the average Martian induced magnetosphere configuration.
Fig. 2: Slices through the centre of the three-dimensional map of the Martian current systems.
Fig. 3: Currents in the Martian induced magnetotail and tailward sheath.
Fig. 4: Illustration of the formative current systems in the Martian induced magnetosphere.

Data availability

All datasets analysed in this study are publicly available through the NASA Planetary Data System ( MAVEN data are hosted at the Planetary Plasma Interactions node, provided by the University of California, Los Angeles ( The data that support the plots within this paper and other findings of this study are also available from the corresponding author upon reasonable request.

Code availability

Code related to the implementation of methods presented in this study will be provided upon reasonable request to the corresponding author.


  1. 1.

    Michel, F. C. Solar wind interaction with planetary atmospheres. Rev. Geophys. Space Phys. 9, 427–435 (1971).

    ADS  Article  Google Scholar 

  2. 2.

    Intrilligator, D. S. & Smith, E. J. Mars in the solar wind. J. Geophys. Res. 84, 8427–8435 (1979).

    ADS  Article  Google Scholar 

  3. 3.

    Riedler, W. et al. Magnetic fields near Mars: first results. Nature 341, 604–607 (1989).

    ADS  Article  Google Scholar 

  4. 4.

    Lundin, L. Ion acceleration and outflow from Mars and Venus: an overview. Space Sci. Rev. 162, 309–334 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    Dong, Y. et al. Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. J. Geophys. Res. Space Phys. 122, 4009–4022 (2017).

  6. 6.

    Jakosky, B. M. & Phillips, R. J. Mars’ volatile and climate history. Nature 412, 237–244 (2001).

    ADS  Article  Google Scholar 

  7. 7.

    Mangold, N., Baratoux, D., Witasse, O., Encrenaz, T. & Sotin, C. Mars: a small terrestrial planet. Astron. Astrophys. Rev. 24, 15 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Baumjohann, W., Blanc, M., Fedorov, A. & Glassmeier, K.-H. Current systems in planetary magnetospheres and ionospheres. Space Sci. Rev. 152, 99–134 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H. & Holmström, M. Global Mars–solar wind coupling and ion escape. J. Geophys. Res. Space Phys. 122, 8051–8062 (2017).

  10. 10.

    Nilsson, H., Barghouti, I. A., Slapak, R., Eriksson, A. I. & André, M. Hot and cold ion outflow: spatial distribution of ion heating. J. Geophys. Res. Space Phys. 117, A11201 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Li, K. et al. Cold ion outflow modulated by the solar wind energy input and tilt of the geomagnetic dipole. J. Geophys. Res. Space Phys. 122, 10658–10668 (2017).

  12. 12.

    Arridge, S. A. & Martin, C. J. in Electric Currents in Geospace and Beyond (eds. Keiling, A., Marghitu, O. & Wheatland, M.) 191–205 (Wiley, 2018).

  13. 13.

    Chapman, S. & Ferraro, V. C. A. A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 77–97 (1931).

    Article  Google Scholar 

  14. 14.

    Axford, W. I., Petschek, H. E. & Siscoe, G. L. Tail of the magnetosphere. J. Geophys. Res. 7, 1231–1236 (1965).

    ADS  Article  Google Scholar 

  15. 15.

    Volland, H. A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res. Space Phys. 78, 171–180 (1973).

    ADS  Article  Google Scholar 

  16. 16.

    Ganushkina, N. Yu., Liemohn, M. W. & Dubyagin, S. Current systems in the the Earth’s magnetosphere. Rev. Geophys. 56, 309–332 (2018).

  17. 17.

    Cloutier, P. A. & Daniell, R. E. Ionospheric currents induced by solar wind interaction with planetary atmospheres. Planet. Space Sci. 21, 463–474 (1973).

    ADS  Article  Google Scholar 

  18. 18.

    Daniell, R. E. & Cloutier, P. A. Distribution of ionospheric currents induced by the solar wind interaction with Venus. Planet. Space Sci. 25, 621–628 (1977).

    ADS  Article  Google Scholar 

  19. 19.

    Luhmann, J. G. Pervasive large-scale magnetic fields in the Venus nightside ionosphere and their implications. J. Geophys. Res. 97, 6103–6121 (1992).

    ADS  Article  Google Scholar 

  20. 20.

    Acuña, M. H. et al. Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission. Science 279, 1676–1680 (1998).

    ADS  Article  Google Scholar 

  21. 21.

    Gringauz, K. I. A comparison of the magnetospheres of Mars, Venus and Earth. Ann. Space Res. 1, 5–24 (1981).

    ADS  Article  Google Scholar 

  22. 22.

    Li, L., Xie, L., Zhang, Y. & Liu, T. Model investigation of current system and influence of the crustal fields on the large scale structure of current sheets at Mars. Planet. Space Sci. 86, 80–85 (2013).

  23. 23.

    Vernisse, Y., Riousset, J. A., Motschmann, U. & Glassmeier, K. H. Simulations of stellar wind and planetary bodies: ionosphere-rich obstacles in a super-Alfvénic flow. Planet. Space Sci. 137, 64–72 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Jakosky, B. M. et al. The mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Connerney, J. E. P. et al. The MAVEN magnetic field investigation. Space Sci. Rev. 195, 257–291 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Dunlop, M. W., Southwood, D. J., Glassmeier, K. H. & Neubauer, F. M. Analysis of multipoint magnetometer data. Adv. Space Phys. 8, 9–10 (1988).

    Article  Google Scholar 

  27. 27.

    Escoubet, C. P., Fehringer, M. & Goldstein, M. The Cluster mission. Ann. Geophys. 19, 1197–1200 (2001).

    ADS  Article  Google Scholar 

  28. 28.

    Burch, J. L., Moore, T. E., Torbert, R. B. & Giles, B.-L. Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 5–21 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Dubinin, E. et al. Plasma characteristics of the boundary layer in the Martian magnetosphere. J. Geophys. Res. Space Phys. 101, A12 (1996).

    Article  Google Scholar 

  30. 30.

    Luhmann, J. G., Ledvina, S. A. & Russell, C. T. Induced magnetospheres. Adv. Space Sci. 33, 1905–1912 (2004).

    ADS  Article  Google Scholar 

  31. 31.

    DiBraccio, G. A. et al. The twisted configuration of the Martian magnetotail: MAVEN observations. Geophys. Res. Lett. 45, 4559–4568 (2018).

  32. 32.

    Fillingim, M. in Electric Currents in Geospace and Beyond (eds. Keiling, A., Marghitu, O., & Wheatland, M.) 445–458 (Wiley, 2018).

  33. 33.

    Opgenoorth, H. J. et al. Day-side ionospheric conductivities at Mars. Planet. Space Sci. 58, 1139–1151 (2010).

    ADS  Article  Google Scholar 

  34. 34.

    Dubinin, E. et al. Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations. J. Geophys. Res. 113, A10217 (2008).

    ADS  Google Scholar 

  35. 35.

    Halekas, J. S. et al. Flows, fields, and forces in the Mars-solar wind interaction. J. Geophys. Res. Space Phys. 122, 11320–11341 (2017).

  36. 36.

    Lyons, L. R. & Speiser, T. W. Ohm’s law for a current sheet. J. Geophys. Res. 90, 8543–8546 (1985).

    ADS  Article  Google Scholar 

  37. 37.

    Dubinin, E. et al. The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res. Space Phys. 122, 11285–11301 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Chai, L. et al. The induced global looping magnetic field on Mars. Astrophys. J. Lett. 871, L27 (2019).

    ADS  Article  Google Scholar 

  39. 39.

    Chai, L. et al. An induced global magnetic field looping around the magnetotail of Venus. J. Geophys. Res. Space Phys. 121, 688–698 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Dubinin, E. et al. Toroidal and poloidal magnetic fields at Venus. J. Geophys. Res. 87, 19–29 (2013).

    Google Scholar 

  41. 41.

    Marquette, M. L. et al. Autocorrelation study of solar wind plasma and IMF properties as measured by the MAVEN spacecraft. J. Geophys. Res. Space Phys. 123, 2493–2512 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Halekas, J. S. et al. The solar wind ion analyzer for MAVEN. Space Sci. Rev. 195, 125–151 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    McComas, D. J., Spence, H. E., Russell, C. T. & Saunders, M. A. The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. Space Phys. 91, 7939–7953 (1986).

    ADS  Article  Google Scholar 

  44. 44.

    Liemohn, M. W. et al. Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet. J. Geophys. Res. Space Phys. 122, 6397–6414 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Riousset, J. A. et al. Electrodynamics of the Martian dynamo region near magnetic cusps and loops. Geophys. Res. Lett. 41, 1119–1125 (2015).

    ADS  Article  Google Scholar 

Download references


This study was made possible thanks to NASA’s Mars Exploration Program through their continued support of the MAVEN mission.

Author information




R.R. conceptualized the study and produced the published results based on MAVEN physical data products. The production of the relevant MAVEN data products is led by J.E. and J.H. based on direct measurements acquired from the spacecraft instruments, measurements which they also plan and continuously calibrate. R.R., D.A.B., Y.D., J.E. and J.H. contributed substantially to scientific interpretation of the results and drafting of the manuscript. B.J. directs the operation of the spacecraft, acquisition of data, and related scientific investigations as principal investigator for the MAVEN mission. All authors discussed the results and conclusions of the manuscript.

Corresponding author

Correspondence to Robin Ramstad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Matthew Fillingim, Catherine Johnson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Summary of supplementary information, Supplementary Figs. 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramstad, R., Brain, D.A., Dong, Y. et al. The global current systems of the Martian induced magnetosphere. Nat Astron 4, 979–985 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing