Abstract
Satellites orbiting disk galaxies can induce phase space features such as spirality, vertical heating and phase-mixing in their disks. Such features have also been observed in our own Galaxy, but the complexity of the Milky Way disk has only recently been fully mapped by Gaia Data Release 2 (DR2) data. This complex behaviour is mainly ascribed to repeated perturbations induced by the Sagittarius dwarf galaxy (Sgr) along its orbit, pointing to this satellite as the main dynamical architect of the Milky Way disk. Here, we model Gaia DR2-observed colour–magnitude diagrams to obtain a detailed star formation history of the ~2 kpc bubble around the Sun. It reveals three conspicuous and narrow episodes of enhanced star formation that we can precisely date as having occurred 5.7, 1.9 and 1.0 Gyr ago. The timing of these episodes coincides with proposed Sgr pericentre passages according to (1) orbit simulations, (2) phase space features in the Galactic disk and (3) Sgr stellar content. These findings most probably suggest that Sgr has also been an important actor in the build-up of the stellar mass of the Milky Way disk, with the perturbations from Sgr repeatedly triggering major episodes of star formation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data analysed in this paper are publicly available from the Gaia DR2 archive (http://gea.esac.esa.int/archive/). The datasets containing information not available in public catalogues that is necessary to reproduce this work and the corresponding figures are available as Supplementary Data 1. An explanatory README file is included. Supplementary Data 1 consists of the following files: (1) For Figs. 1 and 2, two examples of randomly selected samples of ~250,000 stars (with different extinction coefficients), together with the solution from the THESTORM code. This includes two tables directly retrieved from the Gaia archive as described in the Methods, supplemented by extinction information on a star-by-star basis. (2) For Fig. 3, six mock population CMDs together with the outputs from THESTORM. (3) Examples of randomly selected samples of 250,000 stars for thin and thick disk stars, together with the solutions from the THESTORM code (for Fig. 4). Other data not included in the above-mentioned link are available from the corresponding author on reasonable request.
Code availability
The code used to interpolate the three-dimensional extinction maps63 can be retrieved from https://github.com/edober/dust_maps_3d.
References
Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Gallart, C., Zoccali, M. & Aparicio, A. The adequacy of stellar evolution models for the interpretation of the color-magnitude diagrams of resolved stellar populations. Annu. Rev. Astron. Astrophys. 43, 387–434 (2005).
Mor, R., Robin, A. C., Figueras, F., Roca-Fàbrega, S. & Luri, X. Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago. Astron. Astrophys. 624, L1 (2019).
Heavens, A., Panter, B., Jimenez, R. & Dunlop, J. The star-formation history of the Universe from the stellar populations of nearby galaxies. Nature 428, 625–627 (2004).
Perryman, M. A. C. et al. The HIPPARCOS Catalogue. Astron. Astrophys. 323, L49–L52 (1997).
Bertelli, G. & Nasi, E. Star formation history in the solar vicinity. Astron. J. 121, 1013–1023 (2001).
Vergely, J.-L., Köppen, J., Egret, D. & Bienaymé, O. An inverse method to interpret colour-magnitude diagrams. Astron. Astrophys. 390, 917–929 (2002).
Cignoni, M., Degl’Innocenti, S., Prada Moroni, P. G. & Shore, S. N. Recovering the star formation rate in the solar neighborhood. Astron. Astrophys. 459, 783–796 (2006).
Haywood, M. et al. Phylogeny of the Milky Way’s inner disk and bulge populations: implications for gas accretion, (the lack of) inside-out thick disk formation, and quenching. Astron. Astrophys. 618, A78 (2018).
Bernard, E. J. in IAU Symposium 334: Rediscovering Our Galaxy (eds Chiappini, C. et al.) 158–161 (IAU, 2018).
Feltzing, S., Holmberg, J. & Hurley, J. R. The solar neighbourhood age-metallicity relation—does it exist? Astron. Astrophys. 377, 911–924 (2001).
Bergemann, M. et al. The Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk. Astron. Astrophys. 565, A89 (2014).
Hayden, M. R. et al. Chemical cartography with APOGEE: metallicity distribution functions and the chemical structure of the Milky Way Disk. Astrophys. J. 808, 132 (2015).
Gaia Collaboration et al. Gaia Data Release 2: mapping the Milky Way disc kinematics. Astron. Astrophys. 616, A11 (2018).
Gaia Collaboration et al. Gaia Data Release 2: observational Hertzsprung–Russell diagrams. Astron. Astrophys. 616, A10 (2018).
Kennicutt, R. C. Jr., Keel, W. C., van der Hulst, J. M., Hummel, E. & Roettiger, K. A. The effects of interactions on spiral galaxies. II: disk star-formation rates. Astron. J. 93, 1011–1023 (1987).
Tissera, P. B., Domíguez-Tenreiro, R., Scannapieco, C. & Sáiz, A. Double starbursts triggered by mergers in hierarchical clustering scenarios. Mon. Not. R. Astron. Soc. 333, 327–338 (2002).
Ellison, S. L., Mendel, J. T., Patton, D. R. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey–VIII. The observational properties of post-merger galaxies. Mon. Not. R. Astron. Soc. 435, 3627–3638 (2013).
Tinsley, B. M. & Larson, R. B. Stellar population explosions in proto-elliptical galaxies. Mon. Not. R. Astron. Soc. 186, 503–517 (1979).
Freeman, K. & Bland-Hawthorn, J. The new galaxy: signatures of its formation. Annu. Rev. Astron. Astrophys. 40, 487–537 (2002).
Meza, A., Navarro, J. F., Abadi, M. G. & Steinmetz, M. Accretion relics in the solar neighbourhood: debris from ω Cen’s parent galaxy. Mon. Not. R. Astron. Soc. 359, 93–103 (2005).
Gallart, C. et al. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nat. Astron 3, 932–939 (2019).
Naab, T. & Ostriker, J. P. Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017).
Ibata, R. A., Gilmore, G. & Irwin, M. J. A dwarf satellite galaxy in Sagittarius. Nature 370, 194–196 (1994).
Belokurov, V. et al. The field of streams: Sagittarius and its siblings. Astrophys. J. 642, L137–L140 (2006).
Law, D. R. & Majewski, S. R. The Sagittarius dwarf galaxy: a model for evolution in a triaxial Milky Way halo. Astrophys. J. 714, 229–254 (2010).
Purcell, C. W., Bullock, J. S., Tollerud, E. J., Rocha, M. & Chakrabarti, S. The Sagittarius impact as an architect of spirality and outer rings in the Milky Way. Nature 477, 301–303 (2011).
Laporte, C. F. P., Johnston, K. V., Gómez, F. A., Garavito-Camargo, N. & Besla, G. The influence of Sagittarius and the Large Magellanic Cloud on the stellar disc of the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 481, 286–306 (2018).
Eggen, O. J. The motions of the A Stars at the North Galactic Pole. Publ. Astron. Soc. Pac. 81, 741 (1969).
Siebert, A. et al. Detection of a radial velocity gradient in the extended local disc with RAVE. Mon. Not. R. Astron. Soc. 412, 2026–2032 (2011).
Williams, M. E. K. et al. The wobbly galaxy: kinematics north and south with RAVE red-clump giants. Mon. Not. R. Astron. Soc. 436, 101–121 (2013).
Gómez, F. A. et al. Vertical density waves in the Milky Way disc induced by the Sagittarius dwarf galaxy. Mon. Not. R. Astron. Soc. 429, 159–164 (2013).
Antoja, T. et al. A dynamically young and perturbed Milky Way disk. Nature 561, 360–362 (2018).
Laporte, C. F. P., Minchev, I., Johnston, K. V. & Gómez, F. A. Footprints of the Sagittarius dwarf galaxy in the Gaia data set. Mon. Not. R. Astron. Soc. 485, 3134–3152 (2019).
de la Vega, A., Quillen, A. C., Carlin, J. L., Chakrabarti, S. & D’Onghia, E. Phase wrapping of epicyclic perturbations in the Wobbly Galaxy. Mon. Not. R. Astron. Soc. 454, 933–945 (2015).
Mackereth, J. T. et al. The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon. Not. R. Astron. Soc. 482, 3426–3442 (2019).
de Boer, T. J. L., Belokurov, V. & Koposov, S. The star formation history of the Sagittarius stream. Mon. Not. R. Astron. Soc. 451, 3489–3503 (2015).
Siegel, M. H. et al. The ACS survey of galactic globular clusters: M54 and Young populations in the sagittarius dwarf spheroidal galaxy. Astrophys. J. 667, L57–L60 (2007).
Besla, G. et al. Are the Magellanic Clouds on their first passage about the Milky Way? Astrophys. J. 668, 949–967 (2007).
Laporte, C. F. P., Gómez, F. A., Besla, G., Johnston, K. V. & Garavito-Camargo, N. Response of the Milky Way’s disc to the Large Magellanic Cloud in a first infall scenario. Mon. Not. R. Astron. Soc. 473, 1218–1230 (2018).
Laporte, C. F. P., Belokurov, V., Koposov, S. E., Smith, M. C. & Hill, V. Chemo-dynamical properties of the Anticenter Stream: a surviving disc fossil from a past satellite interaction. Mon. Not. R. Astron. Soc. 492, L61–L65 (2020).
McConnachie, A. W. et al. The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 461, 66–69 (2009).
Bernard, E. J. et al. The star formation history and dust content in the far outer disc of M31. Mon. Not. R. Astron. Soc. 420, 2625–2643 (2012).
Mihos, J. C. & Hernquist, L. Triggering of starbursts in galaxies by minor mergers. Astrophys. J. 425, L13–L16 (1994).
Hernquist, L. & Mihos, J. C. Excitation of activity in galaxies by minor mergers. Astrophys. J. 448, 41 (1995).
Cox, T. J., Jonsson, P., Somerville, R. S., Primack, J. R. & Dekel, A. The effect of galaxy mass ratio on merger-driven starbursts. Mon. Not. R. Astron. Soc. 384, 386–409 (2008).
Moreno, J. et al. Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation. Mon. Not. R. Astron. Soc. 448, 1107–1117 (2015).
Teyssier, R., Chapon, D. & Bournaud, F. The driving mechanism of starbursts in galaxy mergers. Astrophys. J. 720, L149–L154 (2010).
Chien, L.-H. & Barnes, J. E. Dynamically driven star formation in models of NGC 7252. Mon. Not. R. Astron. Soc. 407, 43–54 (2010).
Moster, B. P., Macciò, A. V., Somerville, R. S., Naab, T. & Cox, T. J. The effects of a hot gaseous halo in galaxy major mergers. Mon. Not. R. Astron. Soc. 415, 3750–3770 (2011).
Luri, X. et al. Gaia Data Release 2: using Gaia parallaxes. Astron. Astrophys. 616, A9 (2018).
Lindegren, L. et al. Gaia Data Release 2: the astrometric solution. Astron. Astrophys. 616, A2 (2018).
Stassun, K. G. & Torres, G. Evidence for a systematic offset of -80 μas in the Gaia DR2 Parallaxes. Astrophys. J. 862, 61 (2018).
Riess, A. G. et al. Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant. Astrophys. J. 861, 126 (2018).
Zinn, J. C., Pinsonneault, M. H., Huber, D. & Stello, D. Confirmation of the Gaia DR2 parallax zero-point offset using asteroseismology and spectroscopy in the Kepler field. Astrophys. J. 878, 136 (2019).
Schönrich, R., McMillan, P. & Eyer, L. Distances and parallax bias in Gaia DR2. Mon. Not. R. Astron. Soc. 487, 3568–3580 (2019).
Khan, S. et al. New light on the Gaia DR2 parallax zero-point: influence of the asteroseismic approach, in and beyond the Kepler field. Astron. Astrophys. 628, A35 (2019).
Graczyk, D. et al. Testing systematics of Gaia DR2 parallaxes with empirical surface brightness: color relations applied to eclipsing binaries. Astrophys. J. 872, 85 (2019).
Hall, O. J. et al. Testing asteroseismology with Gaia DR2: hierarchical models of the red clump. Mon. Not. R. Astron. Soc. 486, 3569–3585 (2019).
Leung, H. W. & Bovy, J. Simultaneous calibration of spectro-photometric distances and the Gaia DR2 parallax zero-point offset with deep learning. Mon. Not. R. Astron. Soc. 489, 2079–2096 (2019).
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV: distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).
Anders, F. et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18. Astron. Astrophys. 628, A94 (2019).
Lallement, R. et al. Three-dimensional maps of interstellar dust in the Local Arm: using Gaia, 2MASS, and APOGEE-DR14. Astron. Astrophys. 616, A132 (2018).
Casagrande, L. & VandenBerg, D. A. On the use of Gaia magnitudes and new tables of bolometric corrections. Mon. Not. R. Astron. Soc. 479, L102–L107 (2018).
Cignoni, M. & Tosi, M. Star formation histories of dwarf galaxies from the colour-magnitude diagrams of their resolved stellar populations. Adv. Astron. 2010, 158568 (2010).
Aparicio, A. & Hidalgo, S. L. IAC-pop: finding the star formation history of resolved galaxies. Astron. J. 138, 558–567 (2009).
Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the local group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).
Monelli, M. et al. The ACS LCID Project. III. The star formation history of the Cetus dSph galaxy: a post-reionization fossil. Astrophys. J. 720, 1225–1245 (2010).
Pietrinferni, A., Cassisi, S., Salaris, M. & Castelli, F. A large stellar evolution database for population synthesis studies. I: scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004).
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Evans, D. W. et al. Gaia Data Release 2: photometric content and validation. Astron. Astrophys. 616, A4 (2018).
Bernard, E. J. et al. The spatially-resolved star formation history of the M31 outer disc. Mon. Not. R. Astron. Soc. 453, L113–L117 (2015).
Bernard, E. J. et al. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows. Mon. Not. R. Astron. Soc. 477, 3507–3519 (2018).
Ruiz-Lara, T. et al. Integrated-light analyses vs. colour-magnitude diagrams. II. Leo A: an extremely young dwarf in the Local Group. Astron. Astrophys. 617, A18 (2018).
Hidalgo, S. L. et al. The ACS LCID Project. V. The star formation history of the dwarf galaxy LGS-3: clues to cosmic reionization and feedback. Astrophys. J. 730, 14 (2011).
Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M. & Salaris, M. Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).
Hidalgo, S. L. et al. The updated BaSTI stellar evolution models and isochrones. I. Solar-scaled calculations. Astrophys. J. 856, 125 (2018).
Rusakov, V. et al. The bursty star formation history of the Fornax dwarf spheroidal galaxy revealed with the HST. Preprint at https://arxiv.org/abs/2002.09714 (2020).
Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Acknowledgements
We thank K. C. Freeman, C. Bailer-Jones, G. Battaglia, M. Beasley, C. Brook, C. Dalla Vecchia, J. Falcón-Barroso, R. Leaman and I. Pérez for useful discussions. T.R.-L. and C.G. acknowledge financial support through grant numbers (AEI/FEDER, UE) AYA2017-89076-P, AYA2016-77237-C3-1-P (RAVET project) and AYA2015-63810-P, as well as from the Ministerio de Ciencia, Innovación y Universidades (MCIU) through the State Budget and the Consejería de Economía, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Community through the Regional Budget (including IAC project, TRACES). T.R.-L. is supported by a MCIU Juan de la Cierva–Formación grant (FJCI-2016-30342). S.C. acknowledges support from Premiale INAF “MITIC” and grant number AYA2013-42781P from the Ministry of Economy and Competitiveness of Spain; he has also been supported by the INFN (Iniziativa specifica TAsP). We used data from the European Space Agency mission Gaia (http://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; see http://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research makes use of Python (version 3.6.7, http://www.python.org); Matplotlib (version 3.0.0)79, a suite of open-source python modules that provide a framework for creating scientific plots; and Astropy (version 3.0.5), a community-developed core Python package for astronomy80,81.
Author information
Authors and Affiliations
Contributions
The manuscript was written by T.R.-L. and C.G. T.R.-L. and C.G. defined the final samples under analysis and extracted the SFH presented in this work. The software to analyse Gaia DR2 data was written by T.R.-L. and E.J.B. S.C. contributed to the tools used to generate the synthetic CMDs and evolutionary model predictions in the Gaia photometric system. All authors contributed to the interpretation and analysis of the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Michele Cignoni and Roger Mor for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Ruiz-Lara, T., Gallart, C., Bernard, E.J. et al. The recurrent impact of the Sagittarius dwarf on the star formation history of the Milky Way. Nat Astron 4, 965–973 (2020). https://doi.org/10.1038/s41550-020-1097-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-1097-0
This article is cited by
-
Driving factors behind multiple populations
Science China Physics, Mechanics & Astronomy (2024)
-
Exploring the link between star and planet formation with Ariel
Experimental Astronomy (2022)
-
Observational identification of a sample of likely recent common-envelope events
Nature Astronomy (2021)
-
A new class of fossil fragments from the hierarchical assembly of the Galactic bulge
Nature Astronomy (2020)