Simulations of solar filament fine structures and their counterstreaming flows


Solar filaments, also called solar prominences when appearing above the solar limb, are cold, dense materials suspended in the hot tenuous solar corona, consisting of numerous long, fibril-like threads. These threads are the key to disclosing the physics of solar filaments. Similar structures also exist in galaxy clusters. Besides their mysterious formation, filament threads are observed to move with alternating directions, which are called counterstreaming flows. However, the origin of these flows has not been clarified yet. Here we report that turbulent heating at the solar surface is the key, which randomly evaporates materials from the solar surface to the corona, naturally reproducing the formation and counterstreamings of the sparse threads in the solar corona. We further suggest that while the cold Hα counterstreamings are mainly due to longitudinal oscillations of the filament threads, there are million-kelvin counterstreamings in the corona between threads, which are alternating unidirectional flows.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Magnetic configuration of our 2D model rendered in the 3D space.
Fig. 2: Evolution of the filament.
Fig. 3: The distribution of various parameters in the solar corona at t = 259 min.
Fig. 4: Synthesized Hα image after superposing the results at different times.
Fig. 5: Dynamics of the filament threads and the ambient solar corona.
Fig. 6: Evolution of the heating profile at the footpoints along x = 0 in our simulation.

Data availability

Any snapshots of simulation data (2 TB in size) are available on request to Y.H.Z. ( The data for the figures are avaliable at

Code availability

The code we used is the open-source code AMRVAC 2.0, which can be downloaded directly from its website49.


  1. 1.

    Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B. & Aulanier, G. Physics of solar prominences: II—Magnetic structure and dynamics. Space Sci. Rev. 151, 333–399 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Vial, J.-C. & Engvold, O. Solar Prominences Vol. 415 (Springer, 2015).

  3. 3.

    Chen, P. F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys. 8, 1 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Schmieder, B., Démoulin, P. & Aulanier, G. Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 51, 1967–1980 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Wang, Y.-M. The jetlike nature of He ii λ 304 prominences. Astrophys. J. Lett. 520, L71–L74 (1999).

    ADS  Article  Google Scholar 

  6. 6.

    Wang, J. et al. Formation and material supply of an active-region filament associated with newly emerging flux. Mon. Not. R. Astron. Soc. 488, 3794–3803 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    Antiochos, S. K. & Klimchuk, J. A. A model for the formation of solar prominences. Astrophys. J. 378, 372–377 (1991).

    ADS  Article  Google Scholar 

  8. 8.

    Liu, W., Berger, T. E. & Low, B. C. First SDO/AIA observation of solar prominence formation following an eruption: magnetic dips and sustained condensation and drainage. Astrophys. J. Lett. 745, L21 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Lites, B. W. & Low, B. C. Flux emergence and prominences: a new scenario for 3-dimensional field geometry based on observations with the advanced stokes polarimeter. Sol. Phys. 174, 91–98 (1997).

    ADS  Article  Google Scholar 

  10. 10.

    Kaneko, T. & Yokoyama, T. Reconnection-condensation model for solar prominence formation. Astrophys. J. 845, 12 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Li, L. et al. Repeated coronal condensations caused by magnetic reconnection between solar coronal loops. Astrophys. J. 884, 34 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    Dunn, R. B. Photometry of the Solar Chromosphere. PhD thesis, Harvard Univ. (1961).

  13. 13.

    Simon, G., Schmieder, B., Demoulin, P. & Poland, A. I. Dynamics of solar filaments. VI—Center-to-limb study of Hα and C iv velocities in a quiescent filament. Astron. Astrophys. 166, 319–325 (1986).

    ADS  Google Scholar 

  14. 14.

    Heinzel, P. The fine structure of solar prominences. In Astronomical Society of the Pacific Conference Series Vol. 368 (eds. Heinzel, P. et al.) 271–290 (Astronomical Society of the Pacific, 2007).

  15. 15.

    Engvold, O. Observations of filament structure and dynamics (review). In IAU Colloquium 167: New Perspectives on Solar Prominences, Astronomical Society of the Pacific Conference Series Vol. 150 (eds Webb, D. F. et al.) 23–31 (Astronomical Society of the Pacific, 1998).

  16. 16.

    Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E. & Berger, T. E. Thin threads of solar filaments. Sol. Phys. 226, 239–254 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Hood, A. W., Priest, E. R. & Anzer, U. The fibril structure of prominences. Sol. Phys. 138, 331–351 (1992).

    ADS  Article  Google Scholar 

  18. 18.

    Zhou, Y.-H., Zhang, L.-Y., Ouyang, Y., Chen, P. F. & Fang, C. Solar filament longitudinal oscillations along a magnetic field tube with two dips. Astrophys. J. 839, 9 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Priest, E. R., Hood, A. W. & Anzer, U. The fibril structure of prominences. Sol. Phys. 132, 199–202 (1991).

    ADS  Article  Google Scholar 

  20. 20.

    van der Linden, R. A. M. Can fine-structure in prominences be due to perpendicular thermal conduction. Geophys. Astrophys. Fluid Dyn. 69, 183–199 (1993).

    ADS  Article  Google Scholar 

  21. 21.

    Hillier, A. S. On the nature of the magnetic Rayleigh–Taylor instability in astrophysical plasma: the case of uniform magnetic field strength. Mon. Not. R. Astron. Soc. 462, 2256–2265 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Xia, C. & Keppens, R. Formation and plasma circulation of solar prominences. Astrophys. J. 823, 22 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Heinzel, P. & Anzer, U. On the fine structure of solar filaments. Astrophys. J. Lett. 643, L65–L68 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    Martin, S. F., Lin, Y. & Engvold, O. A method of resolving the 180-degree ambiguity by employing the chirality of solar features. Sol. Phys. 250, 31–51 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Schmieder, B. et al. Reconstruction of a helical prominence in 3D from IRIS spectra and images. Astron. Astrophys. 606, A30 (2017).

    Article  Google Scholar 

  26. 26.

    Schmieder, B., Raadu, M. A. & Wiik, J. E. Fine structure of solar filaments. II—Dynamics of threads and footpoints. Astron. Astrophys. 252, 353–365 (1991).

    ADS  Google Scholar 

  27. 27.

    Zirker, J. B., Engvold, O. & Martin, S. F. Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440–441 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    Lin, Y., Engvold, O. R. & Wiik, J. E. Counterstreaming in a large polar crown filament. Sol. Phys. 216, 109–120 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Wang, H. et al. Extending counter-streaming motion from an active region filament to a sunspot light bridge. Astrophys. J. Lett. 852, L18 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Chen, P. F., Harra, L. K. & Fang, C. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings. Astrophys. J. 784, 50 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Ahn, K., Chae, J., Cao, W. & Goode, P. R. Patterns of flows in an intermediate prominence observed by hinode. Astrophys. J. 721, 74–79 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Zou, P. et al. Material supply and magnetic configuration of an active region filament. Astrophys. J. 831, 123 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Luna, M., Karpen, J. T. & DeVore, C. R. Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746, 30 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Kucera, T. A., Tovar, M. & de Pontieu, B. Prominence motions observed at high cadences in temperatures from 10 000 to 250 000 K. Sol. Phys. 212, 81–97 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    Kucera, T. A., Gilbert, H. R. & Karpen, J. T. Mass flows in a prominence spine as observed in EUV. Astrophys. J. 790, 68 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Alexander, C. E. et al. Anti-parallel EUV flows observed along active region filament threads with Hi-C. Astrophys. J. Lett. 775, L32 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Diercke, A., Kuckein, C., Verma, M. & Denker, C. Counter-streaming flows in a giant quiet-sun filament observed in the extreme ultraviolet. Astron. Astrophys. 611, A64 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Heinzel, P., Gunár, S. & Anzer, U. Fast approximate radiative transfer method for visualizing the fine structure of prominences in the hydrogen Hα line. Astron. Astrophys. 579, A16 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Xia, C., Chen, P. F., Keppens, R. & van Marle, A. J. Formation of solar filaments by steady and nonsteady chromospheric heating. Astrophys. J. 737, 27 (2011).

    ADS  Article  Google Scholar 

  40. 40.

    Aulanier, G. & Schmieder, B. The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astron. Astrophys. 386, 1106–1122 (2002).

    ADS  Article  Google Scholar 

  41. 41.

    Gunár, S., Dudík, J., Aulanier, G., Schmieder, B. & Heinzel, P. Importance of the Hα visibility and projection effects for the interpretation of prominence fine-structure observations. Astrophys. J. 867, 115 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Tu, J. & Song, P. A study of Alfvén wave propagation and heating the chromosphere. Astrophys. J. 777, 53 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Ouyang, Y., Zhou, Y. H., Chen, P. F. & Fang, C. Chirality and magnetic configurations of solar filaments. Astrophys. J. 835, 94 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Karpen, J. T., Antiochos, S. K., Hohensee, M., Klimchuk, J. A. & MacNeice, P. J. Are magnetic dips necessary for prominence formation? Astrophys. J. Lett. 553, L85–L88 (2001).

    ADS  Article  Google Scholar 

  45. 45.

    Withbroe, G. L. & Noyes, R. W. Mass and energy flow in the solar chromosphere and corona. Ann. Rev. Astron. Astrophys. 15, 363–387 (1977).

    ADS  Article  Google Scholar 

  46. 46.

    Aschwanden, M. J. An evaluation of coronal heating models for active regions based on Yohkoh, SOHO, and TRACE observations. Astrophys. J. 560, 1035–1044 (2001).

    ADS  Article  Google Scholar 

  47. 47.

    Xia, C., Chen, P. F. & Keppens, R. Simulations of prominence formation in the magnetized solar corona by chromospheric heating. Astrophys. J. Lett. 748, L26 (2012).

    ADS  Article  Google Scholar 

  48. 48.

    Keppens, R. & Xia, C. The dynamics of funnel prominences. Astrophys. J. 789, 22 (2014).

    ADS  Article  Google Scholar 

  49. 49.

    Xia, C., Teunissen, J., ElMellah, I., Chané, E. & Keppens, R. MPI-AMRVAC 2.0 for solar and astrophysical applications. Astrophys. J. Suppl. Ser. 234, 30 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    Harten, A., Lax, P. D. & Leer, Bv On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983).

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Čada, M. & Torrilhon, M. Compact third-order limiter functions for finite volume methods. J. Comput. Phys. 228, 4118–4145 (2009).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Colgan, J. et al. Radiative losses of solar coronal plasmas. Astrophys. J. 689, 585–592 (2008).

    ADS  Article  Google Scholar 

  53. 53.

    Antiochos, S. K., MacNeice, P. J. & Spicer, D. S. The thermal nonequilibrium of prominences. Astrophys. J. 536, 494–499 (2000).

    ADS  Article  Google Scholar 

  54. 54.

    Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R. & Vink, J. A new radiative cooling curve based on an up-to-date plasma emission code. Astron. Astrophys. 508, 751–757 (2009).

    ADS  Article  Google Scholar 

  55. 55.

    Townsend, R. H. D. An exact integration scheme for radiative cooling in hydrodynamical simulations. Astrophys. J. Suppl. Ser. 181, 391–397 (2009).

    ADS  Article  Google Scholar 

  56. 56.

    Withbroe, G. L. The temperature structure, mass, and energy flow in the corona and inner solar wind. Astrophys. J. 325, 442–467 (1988).

    ADS  Article  Google Scholar 

  57. 57.

    Matsumoto, T. & Kitai, R. Temporal power spectra of the horizontal velocity of the solar photosphere. Astrophys. J. 716, L19–L22 (2010).

    ADS  Article  Google Scholar 

  58. 58.

    Anzer, U. & Heinzel, P. On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. Astrophys. J. 622, 714–721 (2005).

    ADS  Article  Google Scholar 

  59. 59.

    Dere, K. P., DelZanna, G., Young, P. R., Landi, E. & Sutherland, R. S. CHIANTI—an atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys. J. Suppl. Ser. 241, 22 (2019).

    ADS  Article  Google Scholar 

Download references


We thank P. Heinzel, R. Keppens, T. Yokoyama, K. E. Yang and E. S. Liang for valuable suggestions, partly during the ISSI-BJ team meeting. P.F.C. was supported by the Chinese foundations (NSFC 11533005 and 11961131002) and Jiangsu 333 Project (BRA2017359). Y.H.Z. is supported by the Belgian FWO-NSFC project G0E9619N and the Program A for Outstanding PhD candidates in Nanjing University. The simulations were done on the computers in the High Performance Computing Centre of Nanjing University.

Author information




Y.H.Z. performed the simulations and wrote the first draft. P.F.C. initiated the study, supervised the project and led the discussions. J.H. contributed to the calculation of the synthesized EUV image. C.F. contributed to discussions on the Hα calculation.

Corresponding author

Correspondence to P. F. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y.H., Chen, P.F., Hong, J. et al. Simulations of solar filament fine structures and their counterstreaming flows. Nat Astron (2020).

Download citation