Identification of plasma modes in Galactic turbulence with synchrotron polarization

Abstract

Magnetohydrodynamic turbulence is a ubiquitous and fundamental ingredient underlying many astrophysical phenomena. The multiphase nature of the interstellar medium and the diversity of driving mechanisms give rise to spatial variation of turbulence properties, particularly plasma properties. There has been no observational diagnosis of the plasma modes beyond the solar system so far. Here we report the identification of different plasma modes in various Galactic environments, including active star-forming zones and supernova remnants, on the basis of our synchrotron polarization analysis. The observed high degree of consistency between the γ-ray excess in the Cygnus cocoon and the location of magnetosonic modes provides strong observational evidence for the long-advocated theory that magnetosonic modes dominate the cosmic ray (CR) scattering and acceleration. Our results open up a new avenue for the study of interstellar turbulence and demonstrate the indispensability of accounting for their plasma properties in all the relevant processes, including CR transport and star formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration for SPA recipe.
Fig. 2: Numerical simulations on total MHD turbulence data cubes with different compositions of plasma modes.
Fig. 3: Applying SPA to observational data.
Fig. 4: Turbulence modes identified in Cygnus X region.
Fig. 5: SPA analysis in the vicinity of the Rosette nebula.

Data availability

We used the synchrotron polarization data from the Urumqi 6-cm polarization survey (https://www3.mpifr-bonn.mpg.de/survey.html). The data represented in Figs. 4 and 5 are provided with the paper as source data.

Code availability

We opt not to make the SPA code publicly available now because it is still under development and maintenance. We intend to publish the code at a later time. The codes used to generate the plots presented in this paper are available from the corresponding author upon reasonable request.

Change history

  • 18 June 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Armstrong, J. W., Rickett, B. J. & Spangler, S. R. Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209 (1995).

    ADS  Article  Google Scholar 

  2. 2.

    Elmegreen, B. G. & Scalo, J. Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004).

    ADS  Article  Google Scholar 

  3. 3.

    Goldreich, P. & Sridhar, S. Toward a theory of interstellar turbulence. II. Strong Alfvénic turbulence. Astrophys. J. 438, 763–775 (1995).

    ADS  Article  Google Scholar 

  4. 4.

    Lithwick, Y. & Goldreich, P. Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001).

    ADS  Article  Google Scholar 

  5. 5.

    Cho, J. & Lazarian, A. Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325–339 (2003).

    ADS  Article  Google Scholar 

  6. 6.

    Makwana, K. D. & Yan, H. Properties of magnetohydrodynamic modes in compressively driven plasma turbulence. Preprint at http://arXiv.org/abs/1907.01853 (2019).

  7. 7.

    Yan, H. & Lazarian, A. Scattering of cosmic rays by magnetohydrodynamic interstellar turbulence. Phys. Rev. Lett. 89, 281102 (2002).

    ADS  Article  Google Scholar 

  8. 8.

    Lynn, J. W., Quataert, E., Chandran, B. D. G. & Parrish, I. J. Acceleration of relativistic electrons by magnetohydrodynamic turbulence: implications for non-thermal emission from black hole accretion disks. Astrophys. J. 791, 71 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    McKee, C. F. & Ostriker, J. P. A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977).

    ADS  Article  Google Scholar 

  10. 10.

    Klessen, R. S. & Hennebelle, P. Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 520, A17 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Sellwood, J. A. & Balbus, S. A. Differential rotation and turbulence in extended H I disks. Astrophys. J. 511, 660–665 (1999).

    ADS  Article  Google Scholar 

  12. 12.

    Kritsuk, A. G. & Norman, M. L. Thermal instability-induced interstellar turbulence. Astrophys. J. Lett. 569, L127–L131 (2002).

    ADS  Article  Google Scholar 

  13. 13.

    Nakamura, F. & Li, Z.-Y. Protostellar turbulence driven by collimated outflows. Astrophys. J. 662, 395–412 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    Yan, H. & Lazarian, A. Cosmic-ray propagation: nonlinear diffusion parallel and perpendicular to mean magnetic field. Astrophys. J. 673, 942–953 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    SHI, M. J. et al. Observations of Alfvén and slow waves in the solar wind near 1 AU. Astrophys. J. 815, 122 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Yan, H. & Lazarian, A. Cosmic-ray scattering and streaming in compressible magnetohydrodynamic turbulence. Astrophys. J. 614, 757–769 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    Lazarian, A. & Pogosyan, D. Statistical description of synchrotron intensity fluctuations: studies of astrophysical magnetic turbulence. Astrophys. J. 747, 5 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Brandenburg, A. & Dobler, W. Pencil: finite-difference code for compressible hydrodynamic flows. Astrophysics Source Code Library ascl:1010.060 (2010).

  19. 19.

    Mignone, A. et al. PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. Ser. 170, 228–242 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    Xiao, L. et al. A Sino-German λ6 cm polarization survey of the Galactic plane. IV. The region from 60° to 129° longitude. Astron. Astrophys. 529, A15 (2011).

    Article  Google Scholar 

  21. 21.

    Oppermann, N. et al. Estimating extragalactic Faraday rotation. Astron. Astrophys. 575, A118 (2015).

    Article  Google Scholar 

  22. 22.

    Beerer, I. M. et al. A Spitzer view of star formation in the Cygnus X North complex. Astrophys. J. 720, 679–693 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Schneider, N. et al. Globules and pillars in Cygnus X. I. Herschel far-infrared imaging of the Cygnus OB2 environment. Astron. Astrophys. 591, A40 (2016).

    Article  Google Scholar 

  24. 24.

    Wright, N. J. et al. Photoevaporating proplyd-like objects in Cygnus OB2. Astrophys. J. Lett. 746, L21 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Schneider, N. et al. The link between molecular cloud structure and turbulence. Astron. Astrophys. 529, A1 (2011).

    Article  Google Scholar 

  26. 26.

    Rygl, K. L. J. et al. Parallaxes and proper motions of interstellar masers toward the Cygnus X star-forming complex. I. Membership of the Cygnus X region. Astron. Astrophys. 539, A79 (2012).

    Article  Google Scholar 

  27. 27.

    Maia, F. F. S., Moraux, E. & Joncour, I. Young and embedded clusters in Cygnus-X: evidence for building up the initial mass function? Mon. Not. R. Astron. Soc. 458, 3027–3046 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Ackermann, M. et al. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334, 1103 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Abeysekara, A. U. et al. The 2HWC HAWC observatory gamma-ray catalog. Astrophys. J. 843, 40 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Odegard, N. Decameter wavelength observations of the Rosette Nebula and the Monoceros Loop supernova remnant. Astrophys. J. 301, 813 (1986).

    ADS  Article  Google Scholar 

  31. 31.

    Rozanov, Y. A. Stationary Random Processes (Nauka, Moscow, 1990).

  32. 32.

    Chepurnov, A. V. The galactic foreground angular spectra. Astron. Astrophys. Trans. 17, 281–300 (1998).

    ADS  Article  Google Scholar 

  33. 33.

    Dame, T. M., Hartmann, D. & Thaddeus, P. The Milky Way in molecular clouds: a new complete CO survey. Astrophys. J. 547, 792–813 (2001).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the following colleagues for helpful communications on various topics discussed in this paper: F. Boulanger, M. Gangi, S. Gao, A. Lazarian, H. B. Liu, R. Liu, J. Liu, M. Pohl, I. Sushch, A. Taylor, J. Volmer, M. Vorster, X. Wu and Q. Zhu. S.A. acknowledges support from the DESY summer student programme.

Author information

Affiliations

Authors

Contributions

H.Y. oversaw the project. A.C., H.Y. and H.Z. contributed to the theoretical analysis of SPA. K.M. and R.S.-L. prepared the turbulence data. H.Z. carried out the numerical simulation, performed the probability distribution analysis on the simulation results and led the establishment of the SPA recipe. A.C., S.A. and H.Z. analysed the data from real observations. H.Z. and H.Y. interpreted the observational results and led the manuscript preparation. H.Y. and A.C. designed the project. All authors discussed the project and commented on the manuscript.

Corresponding author

Correspondence to Huirong Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Theoretical analysis and decomposed modes test.

(ac) Theoretical Analyses. The different colours represent different Alfvénic-Mach numbers MA. For MS modes, the solid lines are for the high-β cases and the dashed lines refer to the low-β cases. The dashed-dotted lines marks rxx=-2/3 (df) Numerical tests. The color code for signatures: Green- “Alfvénic”; Red- “MS”; Purple- “Ambiguous”. For slow modes with high-β and MA~1, all the observed results are rejected according to the classification threshold (Fig. 3 in the main text).

Extended Data Fig. 2 MS and Alfvénic signature percentages in clustering.

The spot and cluster core scales are marked on the map. Each grid shown here corresponds the information of the cluster core whose center is the grid, as depicted on the top left part of each figure. The color on each grid reveals the percentage of (a)(c) MS and (b)(d) Alfvénic signature at the corresponding cluster. The background is the synchrotron intensity map.

Supplementary information

Supplementary Information

Supplementary discussion.

Source data

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chepurnov, A., Yan, H. et al. Identification of plasma modes in Galactic turbulence with synchrotron polarization. Nat Astron (2020). https://doi.org/10.1038/s41550-020-1093-4

Download citation

Further reading