Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres

Abstract

Sulfur gases substantially affect the photochemistry of planetary atmospheres in our Solar System, and are expected to be important components in exoplanet atmospheres. However, sulfur photochemistry in the context of exoplanets is poorly understood due to a lack of chemical kinetics information for sulfur species under relevant conditions. Here, we study the photochemical role of hydrogen sulfide (H2S) in warm CO2-rich exoplanet atmospheres (800 K) by carrying out laboratory simulations. We find that H2S plays a prominent role in photochemistry, even when present in the atmosphere at relatively low concentrations (1.6%). It participates in both gas and solid phase chemistry, leading to the formation of other sulfur gas products (CH3SH/SO, C2H4S/OCS, SO2/S2 and CS2) and to an increase in solid haze particle production and compositional complexity. Our study shows that we may expect thicker haze with small particle sizes (20–140 nm) for warm CO2-rich exoplanet atmospheres that possess H2S.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified schematic of the PHAZER chamber for current work.
Fig. 2: AFM images of the particles on mica substrates.
Fig. 3: Size distribution of the haze particles formed in plasma and UV experiments, with H2S or no H2S.
Fig. 4: Haze particle production rate in the plasma and UV experiments.
Fig. 5: The mass spectra of the gas mixtures with H2S and without H2S for initial gas mixture, plasma on and UV on.
Fig. 6: Relative yields of the gas products in the plasma and UV experiments.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request. The data used to create Figs. 36 are available in the Source Data files.

References

  1. Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    ADS  Google Scholar 

  2. Knutson, H. A., Benneke, B., Deming, D. & Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b. Nature 505, 66–68 (2014).

    ADS  Google Scholar 

  3. Knutson, H. A. et al. Hubble space telescope near-IR transmission spectroscopy of the super-Earth HD 97658b. Astrophys. J. 794, 155 (2014).

    ADS  Google Scholar 

  4. Lothringer, J. D. et al. An HST/STIs optical transmission spectrum of warm Neptune GJ 436b. Astron. J. 155, 66 (2018).

    ADS  Google Scholar 

  5. Dragomir, D. et al. Rayleigh scattering in the atmosphere of the warm exo-Neptune GJ 3470b. Astrophys. J. 814, 102 (2015).

    ADS  Google Scholar 

  6. He, C. et al. Photochemical haze formation in the atmospheres of super-Earths and mini-Neptunes. Astron. J. 156, 38 (2018).

    ADS  Google Scholar 

  7. Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018).

    ADS  Google Scholar 

  8. Marley, M. S. et al. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J. et al.) 367–391 (Univ. Arizona Press, 2013).

  9. Morley, C. V. et al. Thermal emission and albedo spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).

    ADS  Google Scholar 

  10. Zhang, X., Liang, M. C., Mills, F. P., Belyaev, D. A. & Yung, Y. L. Sulfur chemistry in the middle atmosphere of venus. Icarus 217, 714 (2012).

    ADS  Google Scholar 

  11. Titov, D. V., Ignatiev, N. I., McGouldrick, K., Wilquet, V. & Wilson, C. F. Clouds and hazes of Venus. Space Sci. Rev. 214, 126 (2018).

    ADS  Google Scholar 

  12. Moses, J. I., Allen, M. & Gladstone, G. R. Post-SL9 sulfur photochemistry on jupiter. Geophys. Res. Lett. 22, 1597–1600 (1995).

    ADS  Google Scholar 

  13. Irwin, P. G. J. Cloud structure and composition of Jupiter’s atmosphere. Surv. Geophys 20, 505–535 (1999).

    ADS  Google Scholar 

  14. Moses, J. I., Zolotov, M. Y. & Fegley, B. Photochemistry of a volcanically driven atmosphere on Io: sulfur and oxygen species from a Pele-type eruption. Icarus 156, 76–106 (2002).

    Google Scholar 

  15. Moses, J. I. et al. Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b. Astrophys. J. 777, 34 (2013).

    ADS  Google Scholar 

  16. Hu, R., Seager, S. & Bains, W. Photochemistry in terrestrial exoplanet atmospheres II: H2S and SO2 photochemistry in anoxic atmospheres. Astrophys. J. 769, 6 (2013).

    ADS  Google Scholar 

  17. Zahnle, K., Marley, M. S., Freedman, R. S., Lodders, K. & Fortney, J. J. Atmospheric sulfur photochemistry on hot Jupiters. Astrophys. J. 701, L20–L24 (2009).

    ADS  Google Scholar 

  18. Zahnle, K., Marley, M. S., Morley, C. V. & Moses, J. I. Photolytic hazes in the atmosphere of 51Eri b. Astrophys. J. 824, 137 (2016).

    ADS  Google Scholar 

  19. Gao, P., Marley, M. S., Zahnle, K., Robinson, T. D. & Lewis, N. K. Sulfur hazes in giant exoplanet atmospheres: impacts on reflected light spectra. Astron. J. 153, 139 (2017).

    ADS  Google Scholar 

  20. Domagal-Goldman, S. D., Meadows, V. S., Claire, M. W. & Kasting, J. F. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419–441 (2011).

    ADS  Google Scholar 

  21. He, C. et al. Laboratory simulations of haze formation in the atmospheres of super-Earths and mini-Neptunes: particle color and size distribution. Astrophys. J. Lett. 856, L3 (2018).

    ADS  Google Scholar 

  22. He, C. et al. Gas phase chemistry of cool exoplanet atmospheres: insight from laboratory simulations. ACS Earth Space Chem. 3, 39–50 (2019).

    Google Scholar 

  23. Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. 106, 32829–32839 (2001).

    ADS  Google Scholar 

  24. DeWitt, H. L. et al. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early Earth. Astrobiology 10, 773–781 (2010).

    ADS  Google Scholar 

  25. Friend, J. P., Leifer, R. & Trichon, M. On the formation of stratospheric aerosols. J. Atmos. Sci. 30, 465–479 (1973).

    ADS  Google Scholar 

  26. Ricker, G. R. et al. Transiting exoplanet survey satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2014).

    ADS  Google Scholar 

  27. Butler, R. P. et al. A Neptune-mass planet orbiting the nearby M dwarf GJ 436. Astrophys. J. 617, 580–588 (2004).

    ADS  Google Scholar 

  28. Van Grootel, V. et al. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star. Astrophys. J. 786, 2 (2014).

    ADS  Google Scholar 

  29. He, C. et al. Carbon monoxide affecting planetary atmospheric chemistry. Astrophys. J. Lett. 841, L31 (2017).

    ADS  Google Scholar 

  30. McCullough, P. R., Crouzet, N., Deming, D. & Madhusudhan, N. Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. Astrophys. J. 791, 55 (2014).

    ADS  Google Scholar 

  31. Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    Google Scholar 

  32. Cable, M. L. et al. Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. Chem. Rev. 112, 1882–1909 (2012).

    Google Scholar 

  33. Hu, R., Seager, S. & Bains, W. Photochemistry in terrestrial exoplanet atmospheres I: Photochemistry model and benchmark cases. Astrophys. J. 761, 166 (2012).

    ADS  Google Scholar 

  34. Domagal-Goldman, S. D., Segura, A., Claire, M. W., Robinson, T. D. & Meadows, V. S. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys. J. 792, 90–104 (2014).

    ADS  Google Scholar 

  35. Rimmer, P. B. & Rugheimer, S. Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 329, 124–131 (2019).

    ADS  Google Scholar 

  36. Bar-Nun, A. & Chang, S. Photochemical reactions of water and carbon monoxide in Earth’s primitive atmosphere. J. Geophys. Res. 88, 6662–6672 (1983).

    ADS  Google Scholar 

  37. Pinto, J. P., Gladstone, G. R. & Yung, Y. L. Photochemical production of formaldehyde in earth’s primitive atmosphere. Science 210, 183–185 (1980).

    ADS  Google Scholar 

  38. Cleaves, H. J. The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111–118 (2008).

    ADS  Google Scholar 

  39. Schwartz, A. W., Voet, A. B. & Van Der Veen, M. Recent progress in the prebiotic chemistry of HCN. Orig. Life 14, 91–98 (1984).

    ADS  Google Scholar 

  40. Sze, N. D. & Ko, M. K. W. Photochemistry of COS, CS2, CH3SCH3 and H2S: implications for the atmospheric sulfur cycle. Atmos. Environ. 14, 1223–1239 (1980).

    ADS  Google Scholar 

  41. Kasting, J. F., Zahnle, K. J., Pinto, J. P. & Young, A. T. Sulfur, ultraviolet radiation, and the early evolution of life. Orig. Life Evol. Bio. 19, 95–108 (1989).

    ADS  Google Scholar 

  42. Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018).

    ADS  Google Scholar 

  43. Hickson, K. M., Loison, J. C., Cavalié, T., Hébrard, E. & Dobrijevic., M. The evolution of infalling sulfur species in Titan’s atmosphere. Astron. Astrophys. 572, A58 (2014).

    ADS  Google Scholar 

  44. Ferm, R. J. The chemistry of carbonyl sulfide. Chem. Rev. 57, 621–640 (1957).

    Google Scholar 

  45. Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).

    ADS  Google Scholar 

  46. Pilcher, C. Biosignatures of early Earths. Astrobiology 3, 471–486 (2003).

    ADS  Google Scholar 

  47. Parker, E. T. et al. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment. Orig. Life Evol. Bio 41, 201–212 (2011).

    ADS  Google Scholar 

  48. Arney, G., Domagal-Goldman, S. D. & Meadows, V. S. Organic haze as a biosignature in anoxic Earth-like atmospheres. Astrobiology 18, 311–329 (2018).

    ADS  Google Scholar 

  49. Passerini, R. C. in Organic Sulfur Compounds (ed. Kharasch, N.) 57–74 (Pergamon, 1961).

  50. Eckert, B. & Steudel R. in Elemental Sulfur und Sulfur-Rich Compounds II. Topics in Current Chemistry Vol. 231 (ed. Steudel, R.) 31–98 (Springer, 2003).

  51. Hörst, S. M. & Tolbert, M. A. In situ measurements of the size and density of Titan aerosol analogs. Astrophys. J. Lett. 770, L10 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NASA Astrophysics Research and Analysis Program NNX17AI87G. X.Y. is supported by a 51 Pegasi b Fellowship. S.E.M. is supported by NASA Earth and Space Science Fellowship 80NSSC18K1109.

Author information

Authors and Affiliations

Authors

Contributions

C.H., S.M.H., N.K.L., M.S.M. and J.I.M. conceived the study. J.I.M. calculated the starting gas mixtures. C.H. carried out the experiments and MS measurements. C.H. and X.Y. performed the AFM measurements. C.H. conducted the data analysis and prepared the manuscript. All authors participated in discussions regarding interpretation of the results and edited the manuscript.

Corresponding author

Correspondence to Chao He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 3

Numerical data used to generate graphs in Fig. 3

Source Data Fig. 4

Numerical data used to generate graphs in Fig. 4

Source Data Fig. 5

Numerical data used to generate graphs in Fig. 5

Source Data Fig. 6

Numerical data used to generate graphs in Fig. 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Hörst, S.M., Lewis, N.K. et al. Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres. Nat Astron 4, 986–993 (2020). https://doi.org/10.1038/s41550-020-1072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1072-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing