Evidence of a dynamically evolving Galactic warp


In a cosmological setting, the disk of a galaxy is expected to continuously experience gravitational torques and perturbations from a variety of sources, which can cause the disk to wobble, flare and warp1,2. Specifically, the study of galactic warps and their dynamic nature could reveal key information on the formation history of galaxies and the mass distribution of their haloes. Our Milky Way presents a unique case study for galactic warps, thanks to detailed knowledge of its stellar distribution and kinematics. Using a simple model of how the warp’s orientation is changing with time, here, we measure the precession rate of the Milky Way’s warp using 12 million giant stars from Gaia Data Release 23, finding that it is precessing at 10.86 ± 0.03 (statistical) ± 3.20 (systematic) km s−1 kpc−1 in the direction of Galactic rotation, about one-third the angular rotation velocity at the Sun’s position in the Galaxy. The direction and magnitude of the warp’s precession rate favour the scenario that the warp is the result of a recent or ongoing encounter with a satellite galaxy, rather than the relic of the ancient assembly history of the Galaxy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of the adopted dataset.
Fig. 2: Three-dimensional representation of the precessing warp model.
Fig. 3: Comparison of warp precession rate and angular speed of the Galaxy.
Fig. 4: Comparison of the data (coloured points) and the models (lines).

Data availability

The dataset can be downloaded at https://figshare.com/articles/Giants_P18_csv/11382705.


  1. 1.

    Binney, J. Warps. Annu. Rev. Astron. Astrophys. 30, 51–74 (1992).

    ADS  Article  Google Scholar 

  2. 2.

    Sellwood, J. A. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt T. D. & Gilmore, G.) 923–983 (Springer, 2013).

  3. 3.

    Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  4. 4.

    Sparke, L. S. & Casertano, S. A model for persistent galactic warps. Mon. Not. R. Astron. Soc. 234, 873–898 (1988).

    ADS  Article  Google Scholar 

  5. 5.

    Dubinski, J. & Chakrabarty, D. Warps and bars from the external tidal torques of tumbling dark halos. Astrophys. J. 703, 2068–2081 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Jiang, I.-G. & Binney, J. Warps and cosmic infall. Mon. Not. R. Astron. Soc. 303, L7–L10 (1999).

    ADS  Article  Google Scholar 

  7. 7.

    Shen, J. & Sellwood, J. A. Galactic warps induced by cosmic infall. Mon. Not. R. Astron. Soc. 370, 2–14 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Weinberg, M. D. & Blitz, L. A Magellanic origin for the warp of the Galaxy. Astrophys. J. Lett. 641, L33–L36 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Laporte, C. F. P., Minchev, I., Johnston, K. V. & Gómez, F. A. Footprints of the Sagittarius dwarf galaxy in the Gaia data set. Mon. Not. R. Astron. Soc. 485, 3134–3152 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Gaia Collaboration et al. Gaia Data Release 2. Mapping the Milky Way disc kinematics. Astron. Astrophys. 616, A11 (2018).

  11. 11.

    Liu, C., Tian, H.-J. & Wan, J.-C. The age-kinematical features in the Milky Way outer disk. In Proc. IAU Symposium 321, Formation and Evolution of Galaxy Outskirts (eds Gil de Paz, A. et al.) 6–9 (Cambridge Univ. Press, 2017).

  12. 12.

    Schönrich, R. & Dehnen, W. Warp, waves, and wrinkles in the Milky Way. Mon. Not. R. Astron. Soc. 478, 3809–3824 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Poggio, E. et al. The Galactic warp revealed by Gaia DR2 kinematics. Mon. Not. R. Astron. Soc. 481, L21–L25 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Romero-Gómez, M., Mateu, C., Aguilar, L., Figueras, F. & Castro-Ginard, A. Gaia kinematics reveal a complex lopsided and twisted Galactic Disc warp. Astron. Astrophys. 627, A150 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Carrillo, I. et al. Kinematics with Gaia DR2: the force of a dwarf. Mon. Not. R. Astron. Soc. 490, 797–812 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    López-Corredoira, M. & Sylos Labini, F. Gaia-DR2 extended kinematical maps. I. Method and application. Astron. Astrophys. 621, A48 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Chen, X. et al. An intuitive 3D map of the galactic warp’s precession traced by classical Cepheids. Nat. Astron. 3, 320–325 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Skowron, D. M. et al. A three-dimensional map of the Milky Way using classical Cepheid variable stars. Science 365, 478–482 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    Poggio, E., Drimmel, R., Smart, R. L., Spagna, A. & Lattanzi, M. G. The kinematic signature of the Galactic warp in Gaia DR1. I. The Hipparcos subsample. Astron. Astrophys. 601, A115 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Briggs, F. H. Rules of behavior for galactic warps. Astrophys. J. 352, 15–29 (1990).

    ADS  Article  Google Scholar 

  22. 22.

    Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Amôres, E. B., Robin, A. C. & Reylé, C. Evolution over time of the Milky Way’s disc shape. Astron. Astrophys. 602, A67 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Gerhard, O. Pattern speeds in the Milky Way. Mem. S. A. It. 18, 185–188 (2011).

    Google Scholar 

  25. 25.

    Ideta, M., Hozumi, S., Tsuchiya, T. & Takizawa, M. Time evolution of galactic warps in prolate haloes. Mon. Not. R. Astron. Soc. 311, 733–740 (2000).

    ADS  Article  Google Scholar 

  26. 26.

    Jeon, M., Kim, S. S. & Ann, H. B. Galactic warps in triaxial halos. Astrophys. J. 696, 1899–1917 (2009).

    ADS  Article  Google Scholar 

  27. 27.

    Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Iorio, G. & Belokurov, V. The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon. Not. R. Astron. Soc. 482, 3868–3879 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    D’Onghia, E., Madau, P., Vera-Ciro, C., Quillen, A. & Hernquist, L. Excitation of coupled stellar motions in the Galactic Disk by orbiting satellites. Astrophys. J. 823, 4 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Yusifov, I. in The Magnetized Interstellar Medium (eds Uyaniker, B. et al.) 165–169 (Copernicus, 2004).

  32. 32.

    López-Corredoira, M., Cabrera-Lavers, A., Garzón, F. & Hammersley, P. L. Old stellar Galactic Disc in near-plane regions according to 2MASS: scales, cut-off, flare and warp. Astron. Astrophys. 394, 883–899 (2002).

    ADS  Article  Google Scholar 

  33. 33.

    Momany, Y. et al. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density. Astron. Astrophys. 451, 515–538 (2006).

    ADS  Article  Google Scholar 

  34. 34.

    López-Corredoira, M., Abedi, H., Garzón, F. & Figueras, F. Vertical velocities from proper motions of red clump giants. Astron. Astrophys. 572, A101 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

  36. 36.

    Drimmel, R., Cabrera-Lavers, A. & López-Corredoira, M. A three-dimensional Galactic extinction model. Astron. Astrophys. 409, 205–215 (2003).

    ADS  Article  Google Scholar 

  37. 37.

    Bressan, A. et al. PARSEC: stellar tracks and isochrones with the Padova and Trieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    ADS  Article  Google Scholar 

  38. 38.

    Chen, Y. et al. Improving PARSEC models for very low mass stars. Mon. Not. R. Astron. Soc. 444, 2525–2543 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Chen, Y. et al. PARSEC evolutionary tracks of massive stars up to 350 M at metallicities 0.0001 ≤ Z ≤0.04. Mon. Not. R. Astron. Soc. 452, 1068–1080 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Tang, J. et al. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astron. Soc. 445, 4287–4305 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Article  Google Scholar 

  42. 42.

    Kroupa, P. The initial mass function of stars: evidence for uniformity in variable systems. Science 295, 82–91 (2002).

    ADS  Article  Google Scholar 

  43. 43.

    Astraatmadja, T. L. & Bailer-Jones, C. A. L. Estimating distances from parallaxes. II. Performance of Bayesian distance estimators on a Gaia-like catalogue. Astrophys. J. 832, 137 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Bailer-Jones, C. A. L. The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release. Astron. Astrophys. 609, A8 (2018).

    ADS  Article  Google Scholar 

  45. 45.

    Reylé, C., Marshall, D. J., Robin, A. C. & Schultheis, M. The Milky Way’s external disc constrained by 2MASS star counts. Astron. Astrophys. 495, 819–826 (2009).

    ADS  Article  Google Scholar 

  46. 46.

    Robin, A. C., Reylé, C. & Marshall, D. J. The Galactic warp as seen from 2MASS survey. Astron. Nachr. 329, 1012–1017 (2008).

    ADS  Article  Google Scholar 

  47. 47.

    Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S. Modelling the Galactic interstellar extinction distribution in three dimensions. Astron. Astrophys. 453, 635–651 (2006).

    ADS  Article  Google Scholar 

  48. 48.

    Drimmel, R. & Spergel, D. N. Three-dimensional structure of the Milky Way disk: the distribution of stars and dust beyond 0.35R . Astrophys. J. 556, 181–202 (2001).

    ADS  Article  Google Scholar 

  49. 49.

    Büdenbender, A., van de Ven, G. & Watkins, L. L. The tilt of the velocity ellipsoid in the Milky Way disc. Mon. Not. R. Astron. Soc. 452, 956–968 (2015).

    ADS  Article  Google Scholar 

  50. 50.

    Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The circular velocity curve of the Milky Way from 5 to 25 kpc. Astrophys. J. 871, 120 (2019).

    ADS  Article  Google Scholar 

  51. 51.

    SOFA Software Collection, release 15 (IAU SOFA Board, 2019); http://www.iausofa.org

  52. 52.

    The Hipparcos and Tycho Catalogues: Astrometric and Photometric Star Catalogues Derived from the ESA Hipparcos Space Astrometry Mission SP-1200 (ESA, 1997).

  53. 53.

    Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).

    Article  Google Scholar 

  54. 54.

    Arenou, F. et al. Gaia Data Release 2. Catalogue validation. Astron. Astrophys. 616, A17 (2018).

    Article  Google Scholar 

  55. 55.

    Riess, A. G. et al. Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant. Astrophys. J. 861, 126 (2018).

    ADS  Article  Google Scholar 

  56. 56.

    Zinn, J. C., Pinsonneault, M. H., Huber, D. & Stello, D. Confirmation of the Gaia DR2 parallax zero-point offset using asteroseismology and spectroscopy in the Kepler field. Astrophys. J. 878, 136 (2019).

    ADS  Article  Google Scholar 

  57. 57.

    Schönrich, R., McMillan, P. & Eyer, L. Distances and parallax bias in Gaia DR2. Mon. Not. R. Astron. Soc. 487, 3568–3580 (2019).

    ADS  Article  Google Scholar 

  58. 58.

    Lindegren, L. et al. Gaia DR2 Astrometry (Gaia DPAC, 2018); https://go.nature.com/31q2JrY

  59. 59.

    Wegg, C., Gerhard, O. & Bieth, M. The gravitational force field of the Galaxy measured from the kinematics of RR Lyrae in Gaia. Mon. Not. R. Astron. Soc. 485, 3296–3316 (2019).

    ADS  Article  Google Scholar 

  60. 60.

    Reid, M. J. et al. Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way. Astrophys. J. 783, 130 (2014).

    ADS  Article  Google Scholar 

  61. 61.

    Lindegren, L. The Gaia reference frame for bright sources examined using VLBI observations of radio stars. Astron. Astrophys. 633, A1 (2020).

    ADS  Article  Google Scholar 

  62. 62.

    Bailer-Jones, C. A. L. Practical Bayesian Inference: A Primer for Physical Scientists (Cambridge Univ. Press, 2017).

Download references


E.P. and R.D. thank S. Casertano, V. Debattista and K. V. Johnston for discussions. E.P. thanks B. Bucciarelli for providing the software for the propagation of astrometric covariances. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work was supported by ASI (Italian Space Agency) under contract 2018-24-HH.0. This work was funded in part by the DLR (German space agency) via grant 50 QG 1403.

Author information




E.P. contributed to the sample preparation, modelling and data analysis, and wrote the manuscript together with R.D.; R.D. contributed to the model construction and interpretation of the results; R.A., C.B.J. and M.F. helped with the statistical inference and revised the text; M.G.L., R.L.S. and A.S. contributed to the project planning and revised the text.

Corresponding author

Correspondence to E. Poggio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The cumulative luminosity function for \({{\mathcal{M}}}_{G}={M}_{G}+{A}_{G}\).

For different values of extinction, the cumulative luminosity function was obtained by applying to our modelled colour-magnitude diagram (see text) the colour-colour cuts performed to select our sample.

Extended Data Fig. 2 The completeness of the dataset as a function of apparent magnitude G.

The completeness is the fraction of stars found in both Gaia DR2 and 2MASS, derived using the cross-match table of Gaia DR2 and 2MASS provided by the Gaia Archive (https://gea.esac.esa.int/archive/).

Extended Data Fig. 3 Shape parametrizations of the geometrical warp models adopted in this work, following Equation (2) and (17), and the obtained precession rates.

The radius Rw was scaled to account for different assumptions about the Sun - Galactic center distance in this work and in the considered papers.

Extended Data Fig. 4 Spatial and kinematic parameters adopted in this work.

The values and their corresponding uncertainties are taken directly, as stated, from the cited references (last column).

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poggio, E., Drimmel, R., Andrae, R. et al. Evidence of a dynamically evolving Galactic warp. Nat Astron 4, 590–596 (2020). https://doi.org/10.1038/s41550-020-1017-3

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing