Abstract
In a cosmological setting, the disk of a galaxy is expected to continuously experience gravitational torques and perturbations from a variety of sources, which can cause the disk to wobble, flare and warp1,2. Specifically, the study of galactic warps and their dynamic nature could reveal key information on the formation history of galaxies and the mass distribution of their haloes. Our Milky Way presents a unique case study for galactic warps, thanks to detailed knowledge of its stellar distribution and kinematics. Using a simple model of how the warp’s orientation is changing with time, here, we measure the precession rate of the Milky Way’s warp using 12 million giant stars from Gaia Data Release 23, finding that it is precessing at 10.86 ± 0.03 (statistical) ± 3.20 (systematic) km s−1 kpc−1 in the direction of Galactic rotation, about one-third the angular rotation velocity at the Sun’s position in the Galaxy. The direction and magnitude of the warp’s precession rate favour the scenario that the warp is the result of a recent or ongoing encounter with a satellite galaxy, rather than the relic of the ancient assembly history of the Galaxy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The dataset can be downloaded at https://figshare.com/articles/Giants_P18_csv/11382705.
References
Binney, J. Warps. Annu. Rev. Astron. Astrophys. 30, 51–74 (1992).
Sellwood, J. A. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt T. D. & Gilmore, G.) 923–983 (Springer, 2013).
Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Sparke, L. S. & Casertano, S. A model for persistent galactic warps. Mon. Not. R. Astron. Soc. 234, 873–898 (1988).
Dubinski, J. & Chakrabarty, D. Warps and bars from the external tidal torques of tumbling dark halos. Astrophys. J. 703, 2068–2081 (2009).
Jiang, I.-G. & Binney, J. Warps and cosmic infall. Mon. Not. R. Astron. Soc. 303, L7–L10 (1999).
Shen, J. & Sellwood, J. A. Galactic warps induced by cosmic infall. Mon. Not. R. Astron. Soc. 370, 2–14 (2006).
Weinberg, M. D. & Blitz, L. A Magellanic origin for the warp of the Galaxy. Astrophys. J. Lett. 641, L33–L36 (2006).
Laporte, C. F. P., Minchev, I., Johnston, K. V. & Gómez, F. A. Footprints of the Sagittarius dwarf galaxy in the Gaia data set. Mon. Not. R. Astron. Soc. 485, 3134–3152 (2019).
Gaia Collaboration et al. Gaia Data Release 2. Mapping the Milky Way disc kinematics. Astron. Astrophys. 616, A11 (2018).
Liu, C., Tian, H.-J. & Wan, J.-C. The age-kinematical features in the Milky Way outer disk. In Proc. IAU Symposium 321, Formation and Evolution of Galaxy Outskirts (eds Gil de Paz, A. et al.) 6–9 (Cambridge Univ. Press, 2017).
Schönrich, R. & Dehnen, W. Warp, waves, and wrinkles in the Milky Way. Mon. Not. R. Astron. Soc. 478, 3809–3824 (2018).
Poggio, E. et al. The Galactic warp revealed by Gaia DR2 kinematics. Mon. Not. R. Astron. Soc. 481, L21–L25 (2018).
Romero-Gómez, M., Mateu, C., Aguilar, L., Figueras, F. & Castro-Ginard, A. Gaia kinematics reveal a complex lopsided and twisted Galactic Disc warp. Astron. Astrophys. 627, A150 (2019).
Carrillo, I. et al. Kinematics with Gaia DR2: the force of a dwarf. Mon. Not. R. Astron. Soc. 490, 797–812 (2019).
López-Corredoira, M. & Sylos Labini, F. Gaia-DR2 extended kinematical maps. I. Method and application. Astron. Astrophys. 621, A48 (2019).
Chen, X. et al. An intuitive 3D map of the galactic warp’s precession traced by classical Cepheids. Nat. Astron. 3, 320–325 (2019).
Skowron, D. M. et al. A three-dimensional map of the Milky Way using classical Cepheid variable stars. Science 365, 478–482 (2019).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Poggio, E., Drimmel, R., Smart, R. L., Spagna, A. & Lattanzi, M. G. The kinematic signature of the Galactic warp in Gaia DR1. I. The Hipparcos subsample. Astron. Astrophys. 601, A115 (2017).
Briggs, F. H. Rules of behavior for galactic warps. Astrophys. J. 352, 15–29 (1990).
Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).
Amôres, E. B., Robin, A. C. & Reylé, C. Evolution over time of the Milky Way’s disc shape. Astron. Astrophys. 602, A67 (2017).
Gerhard, O. Pattern speeds in the Milky Way. Mem. S. A. It. 18, 185–188 (2011).
Ideta, M., Hozumi, S., Tsuchiya, T. & Takizawa, M. Time evolution of galactic warps in prolate haloes. Mon. Not. R. Astron. Soc. 311, 733–740 (2000).
Jeon, M., Kim, S. S. & Ann, H. B. Galactic warps in triaxial halos. Astrophys. J. 696, 1899–1917 (2009).
Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).
Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).
Iorio, G. & Belokurov, V. The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon. Not. R. Astron. Soc. 482, 3868–3879 (2019).
D’Onghia, E., Madau, P., Vera-Ciro, C., Quillen, A. & Hernquist, L. Excitation of coupled stellar motions in the Galactic Disk by orbiting satellites. Astrophys. J. 823, 4 (2016).
Yusifov, I. in The Magnetized Interstellar Medium (eds Uyaniker, B. et al.) 165–169 (Copernicus, 2004).
López-Corredoira, M., Cabrera-Lavers, A., Garzón, F. & Hammersley, P. L. Old stellar Galactic Disc in near-plane regions according to 2MASS: scales, cut-off, flare and warp. Astron. Astrophys. 394, 883–899 (2002).
Momany, Y. et al. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density. Astron. Astrophys. 451, 515–538 (2006).
López-Corredoira, M., Abedi, H., Garzón, F. & Figueras, F. Vertical velocities from proper motions of red clump giants. Astron. Astrophys. 572, A101 (2014).
Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).
Drimmel, R., Cabrera-Lavers, A. & López-Corredoira, M. A three-dimensional Galactic extinction model. Astron. Astrophys. 409, 205–215 (2003).
Bressan, A. et al. PARSEC: stellar tracks and isochrones with the Padova and Trieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).
Chen, Y. et al. Improving PARSEC models for very low mass stars. Mon. Not. R. Astron. Soc. 444, 2525–2543 (2014).
Chen, Y. et al. PARSEC evolutionary tracks of massive stars up to 350 M ⊙ at metallicities 0.0001 ≤ Z ≤0.04. Mon. Not. R. Astron. Soc. 452, 1068–1080 (2015).
Tang, J. et al. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astron. Soc. 445, 4287–4305 (2014).
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Kroupa, P. The initial mass function of stars: evidence for uniformity in variable systems. Science 295, 82–91 (2002).
Astraatmadja, T. L. & Bailer-Jones, C. A. L. Estimating distances from parallaxes. II. Performance of Bayesian distance estimators on a Gaia-like catalogue. Astrophys. J. 832, 137 (2016).
Bailer-Jones, C. A. L. The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release. Astron. Astrophys. 609, A8 (2018).
Reylé, C., Marshall, D. J., Robin, A. C. & Schultheis, M. The Milky Way’s external disc constrained by 2MASS star counts. Astron. Astrophys. 495, 819–826 (2009).
Robin, A. C., Reylé, C. & Marshall, D. J. The Galactic warp as seen from 2MASS survey. Astron. Nachr. 329, 1012–1017 (2008).
Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S. Modelling the Galactic interstellar extinction distribution in three dimensions. Astron. Astrophys. 453, 635–651 (2006).
Drimmel, R. & Spergel, D. N. Three-dimensional structure of the Milky Way disk: the distribution of stars and dust beyond 0.35R ☉. Astrophys. J. 556, 181–202 (2001).
Büdenbender, A., van de Ven, G. & Watkins, L. L. The tilt of the velocity ellipsoid in the Milky Way disc. Mon. Not. R. Astron. Soc. 452, 956–968 (2015).
Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The circular velocity curve of the Milky Way from 5 to 25 kpc. Astrophys. J. 871, 120 (2019).
SOFA Software Collection, release 15 (IAU SOFA Board, 2019); http://www.iausofa.org
The Hipparcos and Tycho Catalogues: Astrometric and Photometric Star Catalogues Derived from the ESA Hipparcos Space Astrometry Mission SP-1200 (ESA, 1997).
Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).
Arenou, F. et al. Gaia Data Release 2. Catalogue validation. Astron. Astrophys. 616, A17 (2018).
Riess, A. G. et al. Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant. Astrophys. J. 861, 126 (2018).
Zinn, J. C., Pinsonneault, M. H., Huber, D. & Stello, D. Confirmation of the Gaia DR2 parallax zero-point offset using asteroseismology and spectroscopy in the Kepler field. Astrophys. J. 878, 136 (2019).
Schönrich, R., McMillan, P. & Eyer, L. Distances and parallax bias in Gaia DR2. Mon. Not. R. Astron. Soc. 487, 3568–3580 (2019).
Lindegren, L. et al. Gaia DR2 Astrometry (Gaia DPAC, 2018); https://go.nature.com/31q2JrY
Wegg, C., Gerhard, O. & Bieth, M. The gravitational force field of the Galaxy measured from the kinematics of RR Lyrae in Gaia. Mon. Not. R. Astron. Soc. 485, 3296–3316 (2019).
Reid, M. J. et al. Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way. Astrophys. J. 783, 130 (2014).
Lindegren, L. The Gaia reference frame for bright sources examined using VLBI observations of radio stars. Astron. Astrophys. 633, A1 (2020).
Bailer-Jones, C. A. L. Practical Bayesian Inference: A Primer for Physical Scientists (Cambridge Univ. Press, 2017).
Acknowledgements
E.P. and R.D. thank S. Casertano, V. Debattista and K. V. Johnston for discussions. E.P. thanks B. Bucciarelli for providing the software for the propagation of astrometric covariances. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work was supported by ASI (Italian Space Agency) under contract 2018-24-HH.0. This work was funded in part by the DLR (German space agency) via grant 50 QG 1403.
Author information
Authors and Affiliations
Contributions
E.P. contributed to the sample preparation, modelling and data analysis, and wrote the manuscript together with R.D.; R.D. contributed to the model construction and interpretation of the results; R.A., C.B.J. and M.F. helped with the statistical inference and revised the text; M.G.L., R.L.S. and A.S. contributed to the project planning and revised the text.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 The cumulative luminosity function for \({{\mathcal{M}}}_{G}={M}_{G}+{A}_{G}\).
For different values of extinction, the cumulative luminosity function was obtained by applying to our modelled colour-magnitude diagram (see text) the colour-colour cuts performed to select our sample.
Extended Data Fig. 2 The completeness of the dataset as a function of apparent magnitude G.
The completeness is the fraction of stars found in both Gaia DR2 and 2MASS, derived using the cross-match table of Gaia DR2 and 2MASS provided by the Gaia Archive (https://gea.esac.esa.int/archive/).
Extended Data Fig. 3 Shape parametrizations of the geometrical warp models adopted in this work, following Equation (2) and (17), and the obtained precession rates.
The radius Rw was scaled to account for different assumptions about the Sun - Galactic center distance in this work and in the considered papers.
Extended Data Fig. 4 Spatial and kinematic parameters adopted in this work.
The values and their corresponding uncertainties are taken directly, as stated, from the cited references (last column).
Supplementary information
Rights and permissions
About this article
Cite this article
Poggio, E., Drimmel, R., Andrae, R. et al. Evidence of a dynamically evolving Galactic warp. Nat Astron 4, 590–596 (2020). https://doi.org/10.1038/s41550-020-1017-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-1017-3
This article is cited by
-
A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp
Nature Astronomy (2024)
-
The Radcliffe Wave is oscillating
Nature (2024)