Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets


Understanding the origin of life-essential volatiles such as nitrogen (N) in the Solar System and beyond is critical to evaluate the potential habitability of rocky planets1,2,3,4,5. Whether the inner Solar System planets accreted these volatiles from their inception or had an exogenous delivery from the outer Solar System is, however, not well understood. Using previously published data of nucleosynthetic anomalies of nickel, molybdenum, tungsten and ruthenium in iron meteorites along with their 15N/14N ratios, here we show that the earliest formed protoplanets in the inner and outer protoplanetary disk accreted isotopically distinct N. While the Sun and Jupiter captured N from nebular gas6, concomitantly growing protoplanets in the inner and outer disk possibly sourced their N from organics and/or dust—with each reservoir having a different N isotopic composition. A distinct N isotopic signature of the inner Solar System protoplanets coupled with their rapid accretion7,8 suggests that non-nebular, isotopically processed N was ubiquitous in their growth zone between 0 and ~0.3 Myr after Solar System formation. Because the 15N/14N ratio of the bulk silicate Earth falls between that of the inner and outer Solar System reservoirs, we infer that N in the present-day rocky planets represents a mixture of both inner and outer Solar System material.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Variations in 15N/14N ratios of various Solar System objects and reservoirs.
Fig. 2: CC–NC dichotomy of iron meteorites plotted in δ15N–ε64Ni, δ15N–ε183W, δ15N–ε94Mo and δ15N–ε100Ru space.
Fig. 3: N content in iron meteorites can be explained by the segregation of N into protoplanetary cores rather than via nebular ingassing into Fe–Ni alloys.
Fig. 4: Contribution of CC and NC material to the N budget of the BSE.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.


  1. 1.

    Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).

    ADS  Google Scholar 

  2. 2.

    Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    ADS  Google Scholar 

  3. 3.

    Alexander, C. M. O. D., Cody, G. D., De Gregorio, B. T., Nittler, L. R. & Stroud, R. M. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chem. Erde 77, 227–256 (2017).

    Google Scholar 

  4. 4.

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    ADS  Google Scholar 

  5. 5.

    Dasgupta, R. & Grewal, D. S. in Deep Carbon: Past to Present (eds Orcutt, B. et al.) 4–39 (Cambridge Univ. Press, 2019);

  6. 6.

    Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G. & Burnett, D. S. A 15N-poor isotopic composition for the Solar System as shown by genesis solar wind samples. Science 332, 1533–1536 (2011).

    ADS  Google Scholar 

  7. 7.

    Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).

    ADS  Google Scholar 

  8. 8.

    Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. USA (2017).

  9. 9.

    Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    ADS  Google Scholar 

  10. 10.

    Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    ADS  Google Scholar 

  11. 11.

    Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 501–510 (2018).

    ADS  Google Scholar 

  12. 12.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS  Google Scholar 

  13. 13.

    Javoy, M., Pineau, F. & Demaiffe, D. Nitrogen and carbon isotopic composition in the diamonds of Mbuji Mayi (Zaïre). Earth Planet. Sci. Lett. 68, 399–412 (1984).

    ADS  Google Scholar 

  14. 14.

    Grady, M. M. & Wright, I. P. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev. 106, 231–248 (2003).

    ADS  Google Scholar 

  15. 15.

    Sugiura, N. & Fujiya, W. Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci. 49, 772–787 (2014).

    ADS  Google Scholar 

  16. 16.

    Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    ADS  Google Scholar 

  17. 17.

    Desch, S. J., Kalyaan, A. & Alexander, C. M. O'D. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    ADS  Google Scholar 

  18. 18.

    Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B. & Kleine, T. Elemental and isotopic variability in Solar System materials by mixing and processing of primordial disk reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019).

    ADS  Google Scholar 

  19. 19.

    Prombo, C. A. & Clayton, R. N. Nitrogen isotopic compositions of iron meteorites. Geochim. Cosmochim. Acta 57, 3749–3761 (1993).

    ADS  Google Scholar 

  20. 20.

    Franchi, I. A., Wright, I. P. & Pillinger, C. T. Constraints on the formation conditions of iron meteorites based on concentrations and isotopic compositions of nitrogen. Geochim. Cosmochim. Acta 57, 3105–3121 (1993).

    ADS  Google Scholar 

  21. 21.

    Charnley, S. B. & Rodgers, S. D. The end of interstellar chemistry as the origin of nitrogen in comets and meteorites. Astrophys. J. 569, L133–L137 (2002).

    ADS  Google Scholar 

  22. 22.

    Kuga, M., Marty, B., Marrocchi, Y. & Tissandier, L. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula. Proc. Natl Acad. Sci. USA 112, 7129–7134 (2015).

    ADS  Google Scholar 

  23. 23.

    Owen, T., Mahaffy, P. R., Niemann, H. B., Atreya, S. & Wong, M. Protosolar nitrogen. Astrophys. J. 553, 77–79 (2001).

    ADS  Google Scholar 

  24. 24.

    Meibom, A. et al. Nitrogen and carbon isotopic composition of the Sun inferred from a high-temperature solar nebular condensate. Astrophys. J. 656, L33–L36 (2007).

    ADS  Google Scholar 

  25. 25.

    Grewal, D. S. et al. The fate of nitrogen during core–mantle separation on Earth. Geochim. Cosmochim. Acta 251, 87–115 (2019).

    ADS  Google Scholar 

  26. 26.

    Righter, K., Sutton, S. R., Danielson, L., Pando, K. & Newville, M. Redox variations in the inner Solar System with new constraints from vanadium XANES in spinels. Am. Mineral. 101, 1928–1942 (2016).

    ADS  Google Scholar 

  27. 27.

    Yang, J., Goldstein, J. I. & Scott, E. R. D. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446, 888–891 (2007).

    ADS  Google Scholar 

  28. 28.

    Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    ADS  Google Scholar 

  29. 29.

    Okazaki, R., Takaoka, N., Nagao, K., Sekiya, M. & Nakamura, T. Noble-gas-rich chondrules in an enstatite meteorite. Nature 412, 795–798 (2001).

    ADS  Google Scholar 

  30. 30.

    Chakraborty, S. et al. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data. Proc. Natl Acad. Sci. USA 111, 14704–14709 (2014).

    ADS  Google Scholar 

  31. 31.

    Füri, E., Chaussidon, M. & Marty, B. Evidence for an early nitrogen isotopic evolution in the solar nebula from volatile analyses of a CAI from the CV3 chondrite NWA 8616. Geochim. Cosmochim. Acta 153, 183–201 (2015).

    ADS  Google Scholar 

  32. 32.

    Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    ADS  Google Scholar 

  33. 33.

    Cartigny, P. & Marty, B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9, 359–366 (2013).

    Google Scholar 

  34. 34.

    Nanne, J. A. M., Nimmo, F., Cuzzi, J. N. & Kleine, T. Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019).

    ADS  Google Scholar 

  35. 35.

    Speelmanns, I. M., Schmidt, M. W. & Liebske, C. Nitrogen solubility in core materials. Geophys. Res. Lett. 45, 7434–7443 (2018).

    ADS  Google Scholar 

  36. 36.

    Murty, S. V. S., Goel, P. S., Minh, D. V. & Shukolyukov, Y. A. Nitrogen and xenon in acid residues of iron meteorites. Geochim. Cosmochim. Acta 47, 1061–1068 (1983).

    ADS  Google Scholar 

  37. 37.

    Sugiura, N., Ikeda, Y., Zashu, S. & Wasson, J. T. Nitrogen-isotopic compositions of IIIE iron meteorites. Meteorit. Planet. Sci. 35, 749–756 (2000).

    ADS  Google Scholar 

  38. 38.

    Pepin, R. O. & Becker, R. H. Nitrogen isotopes in iron meteorites. Meteoritics 17, 269 (1982).

    Google Scholar 

  39. 39.

    Murty, S. V. S. & Marti, K. Nitrogen isotopic signatures in Cape York: implications for formation of group III A irons. Geochim. Cosmochim. Acta 58, 1841–1848 (1994).

    ADS  Google Scholar 

  40. 40.

    Sugiura, N. Ion probe measurements of carbon and nitrogen in iron meteorites. Meteorit. Planet. Sci. 33, 393–409 (1998).

    ADS  Google Scholar 

  41. 41.

    Shukla, P. N. & Goel, P. S. Total nitrogen in iron meteorites. Earth Planet. Sci. Lett. 52, 251–258 (1981).

    ADS  Google Scholar 

  42. 42.

    Kothari, B. K. & Goel, P. S. Total nitrogen in meteorites. Geochim. Cosmochim. Acta 38, 1493–1507 (1974).

    ADS  Google Scholar 

  43. 43.

    Ponganis, K. V. & Marti, K. Nitrogen components in IAB/IIICD iron meteorites. Meteorit. Planet. Sci. 42, 331–346 (2007).

    ADS  Google Scholar 

  44. 44.

    Mathew, K. J., Palma, R. L., Marti, K. & Lavielle, B. Isotopic signatures and origin of nitrogen in IIE and IVA iron meteorites. Geochim. Cosmochim. Acta 64, 545–557 (2000).

    ADS  Google Scholar 

  45. 45.

    Gibson, E. K. & Moore, C. B. The distribution of total nitrogen in iron meteorites. Geochim. Cosmochim. Acta 35, 877–890 (1971).

    ADS  Google Scholar 

  46. 46.

    Goldstein, J. I., Scott, E. R. D. & Chabot, N. L. Iron meteorites: crystallization, thermal history, parent bodies, and origin. Chem. Erde 69, 293–325 (2009).

    Google Scholar 

  47. 47.

    Scott, E. R. D. Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta 36, 1205–1236 (1972).

    ADS  Google Scholar 

  48. 48.

    Li, Y., Marty, B., Shcheka, S., Zimmermann, L. & Keppler, H. Nitrogen isotope fractionation during terrestrial core–mantle separation. Geochem. Perspect. Lett. 2, 138–147 (2016).

    Google Scholar 

  49. 49.

    Dalou, C. et al. Redox control on nitrogen isotope fractionation during planetary core formation. Proc. Natl Acad. Sci. USA 116, 14485–14494 (2019).

    ADS  Google Scholar 

  50. 50.

    Dalou, C., Hirschmann, M. M., von der Handt, A., Mosenfelder, J. & Armstrong, L. S. Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth Planet. Sci. Lett. 458, 141–151 (2017).

    ADS  Google Scholar 

  51. 51.

    Young, E. D. et al. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem. Geol. 395, 176–195 (2015).

    ADS  Google Scholar 

  52. 52.

    Bourdon, B., Roskosz, M. & Hin, R. C. Isotope tracers of core formation. Earth Sci. Rev. 181, 61–81 (2018).

    ADS  Google Scholar 

  53. 53.

    Shahar, A., Elardo, S. M. & Macris, C. A. Equilibrium fractionation of non-traditional stable isotopes: an experimental perspective. Rev. Mineral. Geochem. 82, 65–83 (2017).

    Google Scholar 

  54. 54.

    Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996).

    ADS  Google Scholar 

  55. 55.

    Kung, C. C. & Clayton, R. N. Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet. Sci. Lett. 38, 421–435 (1978).

    ADS  Google Scholar 

  56. 56.

    Füri, E. & Marty, B. Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015).

    ADS  Google Scholar 

  57. 57.

    Bekaert, D. V. et al. High-temperature ionization-induced synthesis of biologically relevant molecules in the protosolar nebula. Astrophys. J. 859, 142 (2018).

    ADS  Google Scholar 

  58. 58.

    Pontoppidan, K. M. et al. The nitrogen carrier in inner protoplanetary disks. Astrophys. J. 874, 92 (2019).

    ADS  Google Scholar 

  59. 59.

    Lewis, J. S. & Prinn, R. G. Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J. 238, 357–364 (1980).

    ADS  Google Scholar 

  60. 60.

    Cuzzi, J. N. & Weidenschilling, S. J. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 353–381 (Univ. Arizona Press, 2006).

  61. 61.

    Cuzzi, J. N. et al. in Chondrites and the Protoplanetary Disk Vol. 341 (eds Krot, A. N. et al.) 732–773 (ASP, 2005).

  62. 62.

    Mori, T., Shinmyo, K., Ichise, E. & Koyama, S. Effects of nickel on the activity of nitrogen in austenite. J. Jpn Inst. Metals Mater. 27, 53–58 (1963).

    Google Scholar 

  63. 63.

    Wada, H. & Pehlke, R. D. Solubility of nitrogen in liquid Fe–Cr–Ni alloys containing manganese and molybdenum. Metall. Trans. B 8, 675–682 (1977).

    Google Scholar 

  64. 64.

    Satir-Kolorz, A. H. & Feichtinger, H. K. On the solubility of nitrogen in liquid iron and steel alloys using elevated pressure. Z. Metall. 82, 689–697 (1991).

    Google Scholar 

  65. 65.

    Scott, E. R. D. & Wasson, J. T. Classification and properties of iron meteorites. Rev. Geophys. 13, 527–546 (1975).

    ADS  Google Scholar 

  66. 66.

    Fegley, B. Primordial retention of nitrogen by terrestrial planets and meteorites. J. Geophys. Res. 88, A853 (1983).

    Google Scholar 

  67. 67.

    Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. Non-chondritic meteorites from asteroidal bodies. Rev. Mineral. Geochem. 36, 4.1–4.195 (1998).

    Google Scholar 

  68. 68.

    Yang, J., Goldstein, J. I. & Scott, E. R. D. Metallographic cooling rates and origin of IVA iron meteorites. Geochim. Cosmochim. Acta 72, 3043–3061 (2008).

    ADS  Google Scholar 

  69. 69.

    Asphaug, E., Agnor, C. B. & Williams, Q. Hit-and-run planetary collisions. Nature 439, 155–160 (2006).

    ADS  Google Scholar 

  70. 70.

    Steenstra, E. S., Knibbe, J. S., Rai, N. & van Westrenen, W. Constraints on core formation in Vesta from metal–silicate partitioning of siderophile elements. Geochim. Cosmochim. Acta 177, 48–61 (2016).

    ADS  Google Scholar 

  71. 71.

    Rubie, D. C. et al. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).

    ADS  Google Scholar 

  72. 72.

    Hilton, C. D. & Walker, R. J. New implications for the origin of the IAB main group iron meteorites and the isotopic evolution of the noncarbonaceous (NC) reservoir. Earth Planet. Sci. Lett. 540, 116248 (2020).

    Google Scholar 

  73. 73.

    Ruzicka, A. Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Geochemistry 74, 3–48 (2014).

    Google Scholar 

  74. 74.

    Ku, Y. & Jacobsen, S. B. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Sci. Adv. 6, eabd0511 (2020).

    ADS  Google Scholar 

  75. 75.

    Worsham, E. A. et al. Distinct evolution of the carbonaceous and non-carbonaceous reservoirs: insights from Ru, Mo, and W isotopes. Earth Planet. Sci. Lett. 521, 103–112 (2019).

    ADS  Google Scholar 

  76. 76.

    Nicolussi, G. K. et al. Molybdenum isotopic composition of individual presolar silicon carbide grains from the murchison meteorite. Geochim. Cosmochim. Acta 62, 1093–1104 (1998).

    ADS  Google Scholar 

  77. 77.

    Amari, S., Nittler, L. R., Zinner, E., Lodders, K. & Lewis, R. S. Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys. J. 559, 463–483 (2001).

    ADS  Google Scholar 

  78. 78.

    Rodgers, S. D. & Charnley, S. B. Nitrogen superfractionation in dense cloud cores. Mon. Not. R. Astron. Soc. 385, 48–52 (2008).

    ADS  Google Scholar 

  79. 79.

    Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).

    ADS  Google Scholar 

  80. 80.

    Alexander, C. M. O. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    ADS  Google Scholar 

  81. 81.

    Grady, M. M., Wright, I. P., Carr, L. P. & Pillinger, C. T. Compositional differences in enstatite chondrites based on carbon and nitrogen stable isotope measurements. Geochim. Cosmochim. Acta 50, 2799–2813 (1986).

    ADS  Google Scholar 

Download references


We acknowledge C.-T. Lee for fruitful discussions during the early stage of this research. A. Vyas and J. D. Seales helped with the CC–NC reservoir mixing calculations for the BSE. A. P. Vyas helped improve the clarity of our communication. D.S.G. received support from NASA FINESST grant 80NSSC19K1538 and Lodieska Stockbridge Vaughn Fellowship by Rice University. R.D. was supported by NASA grants 80NSSC18K0828 and 80NSSC18K1314. B.M. was supported by the European Research Council grant PHOTONIS 695618.

Author information




D.S.G. conceived the project, compiled the data and developed thermodynamic models. D.S.G., R.D. and B.M. interpreted the data. D.S.G. wrote the manuscript with input from R.D. and B.M.

Corresponding author

Correspondence to Damanveer S. Grewal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Bruce Fegley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Statistical variation of N abundances and isotope ratios in different groups of iron meteorites.

Probability distributions function using kernel density distribution function (using Matlab®) are used to ascertain the statistical variation of N abundances and isotope ratios for each group of iron meteorites. For each group, δ15N varies within a small range and shows sharp peaks for mean values, while N abundances show large variation.

Extended Data Fig. 2 δ15N of iron meteorites plotted against their N abundances.

For each iron meteorite group, δ15N falls in a narrow range, while N contents may vary over two orders of magnitude. Lack of any relationship between δ15N values and N abundances within any given group of iron meteorites argues against notable mass-dependent fractionation of N isotopes via volatility-related losses during planetary processing19,20,44.

Extended Data Fig. 3 Partitioning of N into Fe, Ni-alloy melts can explain N abundances for a variety of core-mantle differentiation scenarios.

a) For alloy-silicate equilibration at 1,000 bar-1,600 °C and varying alloy/silicate mass ratio between 0.01 and 1 (within the range of all differentiated rocky bodies in the inner Solar System except Mercury), N content in the core forming Fe, Ni-alloy melts varies between ~10 and 100 ppm. Fixed values of N content in the alloy at ~100 ppm are owing to low N solubility in the alloy at 1000 bar. b) For alloy-silicate equilibration at 10,000 bar-1,600 °C and varying alloy/silicate mass ratio, N content in the core forming Fe, Ni-alloy melts varies between ~10 and 10,000 ppm. The pink shaded regions represent the range of N contents in iron meteorites.

Supplementary information

Supplementary Table 1

A compilation, in machine-readable format, of N abundances and isotopic ratios in iron meteorites.

Supplementary Table 2

A compilation, in machine-readable format, of N isotopic ratios and isotopic anomalies in iron meteorites and rocky bodies in the inner Solar System.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grewal, D.S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat Astron 5, 356–364 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing