Abstract
Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z = 1.4, which is ejecting 46 ± 13% of its molecular gas mass at a startling rate of ≳10,000 M⊙ yr−1. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C i] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The ALMA data analysed in this study are publicly available from the ALMA archive (http://almascience.nrao.edu/aq/, Program IDs: 2015.1.00260.S, 2016.1.00171.S and 2019.1.01702.S). The DEIMOS spectrum of the source is also publicly available and can be retrieved through the COSMOS archive (http://cosmos.astro.caltech.edu/).
Code availability
The ALMA data are processed using a series of GILDAS-based scripts available at https://github.com/1054/Crab.Toolkit.PdBI. The GILDAS software is publicly available at http://www.iram.fr/IRAMFR/GILDAS. The CO and [C i] emission of the source has been modelled with the MICHI2 software, which is publicly available at https://ascl.net/code/v/2533.
References
Man, A. & Belli, S. Star formation quenching in massive galaxies. Nat. Astron. 2, 695–697 (2018).
Harrison, C. M. Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).
Cattaneo, A. et al. The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009).
Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).
Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).
Förster Schreiber, N. M. et al. The KMOS3D survey: demographics and properties of galactic outflows at z = 0.6–2.7. Astrophys. J. 875, 21 (2019).
Mullaney, J. R. et al. The hidden ‘AGN main sequence’: evidence for a universal black hole accretion to star formation rate ratio since z ~ 2 producing an MBH–M* relation. Astrophys. J. Lett. 753, 5 (2012).
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).
Madau, P. & Dickinson, M. Cosmic star-formation history. Ann. Rev. Astron. Astrophys. 52, 415–486 (2014).
Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).
Gabor, J. M. & Bournaud, F. Active galactic nuclei–driven outflows without immediate quenching in simulations of high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 441, 1615–1627 (2014).
Geach, J. E. et al. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy. Nature 516, 68–70 (2014).
Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016).
Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 Ms Chandra Deep Field-South. Astrophys. J. 825, 24 (2016).
Valentino, F. et al. The properties of the interstellar medium of galaxies across time as traced by the neutral atomic carbon [C i]. Astrophys. J. 890, 24 (2020).
Hasinger, G. et al. The DEIMOS 10K spectroscopic survey catalog of the COSMOS field. Astrophys. J. 858, 77 (2018).
Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).
Daddi, E. et al. Very high gas fractions and extended gas reservoirs in z = 1.5 disk galaxies. Astrophys. J. 713, 686–707 (2010).
Emonts, B. H. C. et al. The dragonfly galaxy. II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2. Astron. Astrophys. 584, A99 (2015).
Springel, V. et al. The Aquarius project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008).
Falgarone, E. et al. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies. Nature 548, 430–433 (2017).
Mancini, C. et al. Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the ‘green valley’. Mon. Not. R. Astron. Soc. 489, 1265–1290 (2019).
Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).
Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).
Puglisi, A. et al. The main sequence at z ~ 1.3 contains a sizable fraction of galaxies with compact star formation sizes: a new population of early post-starbursts? Astrophys. J. Lett. 877, L23 (2019).
Perna, M. et al. Galaxy-wide outflows in z ~ 1.5 luminous obscured quasars revealed through near-IR slit-resolved spectroscopy. Astron. Astrophys. 574, A82 (2015).
Feruglio, C. et al. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 583, A99 (2015).
Herrera-Camus, R. et al. Molecular and ionized gas phases of an AGN-driven outflow in a typical massive galaxy at z ≈ 2. Astrophys. J. 871, 37 (2019).
Fluetsch, A. et al. Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon. Not. R. Astron. Soc. 483, 4586–4614 (2019).
Negrello, M. et al. Understanding galaxy formation and evolution through an all-sky submillimetre spectroscopic survey. Pub. Astron. Soc. Aust. 37, e025 (2020).
Schawinski, K., Koss, M., Berney, S. & Sartori, L. F. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of 105 yr. Mon. Not. R. Astron. Soc. 451, 2517–2523 (2015).
Wolf, C. et al. Discovery of the most ultra-luminous QSO using GAIA, SkyMapper, and WISE. Publ. Astron. Soc. Aust. 35, e024 (2018).
Bournaud, F. et al. Hydrodynamics of high-redshift galaxy collisions: from gas-rich disks to dispersion-dominated mergers and compact spheroids. Astrophys. J. 730, 4 (2011).
Swinbank, A. M. et al. Intense star formation within resolved compact regions in a galaxy at z = 2.3. Nature 464, 733–736 (2010).
Danielson, A. L. R. et al. The properties of the interstellar medium within a star-forming galaxy at z = 2.3. Mon. Not. R. Astron. Soc. 410, 1687–1702 (2011).
Barnes, J. E. & Hernquist, L. Transformations of galaxies. II. Gas dynamics in merging disk galaxies. Astrophys. J. 471, 115 (1996).
Hibbard, J. E. & van Gorkom, J. H. H i, H ii, and R-band observations of a galactic merger sequence. Astrophys. J. 111, 655 (1996).
Bournaud, F., Duc, P. A., Amram, P., Combes, F. & Gach, J. L. Kinematics of tidal tails in interacting galaxies: tidal dwarf galaxies and projection effects. Astron. Astrophys. 425, 813–823 (2004).
Silverman, J. D. et al. Concurrent starbursts in molecular gas disks within a pair of colliding galaxies at z = 1.52. Astrophys. J. 868, 75 (2018).
Fensch, J. et al. High-redshift major mergers weakly enhance star formation. Mon. Not. R. Astron. Soc. 465, 1934–1949 (2017).
Bournaud, F. Star formation and structure formation in galaxy interactions and mergers. In Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies, ASP Conference Series Vol. 23 (eds Smith, B. et al.) 177–184 (Astronomical Society of the Pacific, 2010).
Daddi, E. et al. CO excitation of normal star-forming galaxies out to z = 1.5 as regulated by the properties of their interstellar medium. Astron. Astrophys. 577, A46 (2015).
Maiolino, R. et al. Star formation inside a galactic outflow. Nature 544, 202–206 (2017).
Leslie, S. K., Rich, J. A., Kewley, L. J. & Dopita, M. A. The energy source and dynamics of infrared luminous galaxy ESO 148-IG002. Mon. Not. R. Astron. Soc. 444, 1842–1853 (2014).
Monreal-Ibero, A. et al. VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies. II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs. Astron. Astrophys. 517, A28 (2010).
Cicone, C. et al. ALMA [C i]3P1–3P0 observations of NGC 6240: a puzzling molecular outflow, and the role of outflows in the global αCO factor of (U)LIRGs. Astrophys. J. 863, 143 (2018).
Sakamoto, K., Aalto, S., Combes, F., Evans, A. & Peck, A. An infrared-luminous merger with two bipolar molecular outflows: ALMA and SMA observations of NGC 3256. Astrophys. J. 797, 90 (2014).
Bournaud, F., Elmegreen, B. G. & Elmegreen, D. M. Rapid formation of exponential disks and bulges at high redshift from the dynamical evolution of clump-cluster and chain galaxies. Astrophys. J. 670, 237–248 (2007).
English, J., Norris, R. P., Freeman, K. C. & Booth, R. S. NGC 3256: kinematic anatomy of a merger. Astron. J. 125, 1134–1149 (2003).
Feruglio, C. et al. NGC 6240: extended CO structures and their association with shocked gas. Astron. Astrophys. 549, A51 (2013).
Swinbank, A. M. et al. The energetics of starburst-driven outflows at z ~ 1 from KMOS. Mon. Not. R. Astron. Soc. 487, 381–393 (2019).
Ginolfi, M. et al. The ALPINE-ALMA [C ii] survey: star-formation-driven outflows and circumgalactic enrichment in the early Universe. Astron. Astrophys. 633, A90 (2020).
Cibinel, A. et al. Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≤ z ≤ 2. Mon. Not. R. Astron. Soc. 485, 5631–5651 (2019).
Straatman, C. M. S. et al. A substantial population of massive quiescent galaxies at z ~ 4 from ZFOURGE. Astrophys. J. Lett. 783, L14 (2014).
Vayner, A. et al. Galactic-scale feedback observed in the 3C 298 quasar host galaxy. Astrophys. J. 851, 126 (2017).
Brusa, M. et al. Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astron. Astrophys. 612, A29 (2018).
Valentino, F. et al. CO emission in distant galaxies on and above the main sequence. Astron. Astrophys. 641, A155 (2020).
Jin, S. et al. ‘Super-deblended’ dust emission in galaxies. II. Far-IR to (sub)millimeter photometry and high-redshift galaxy candidates in the full COSMOS field. Astrophys. J. 864, 56 (2018).
Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Ann. Rev. Astron. Astrophys. 36, 189–232 (1998).
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).
Laigle, C. et al. The COSMOS2015 catalog: exploring the 1 ≤ z ≤ 6 universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).
Noll, S. et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys. 507, 1793–1813 (2009).
Circosta, C. et al. SUPER. I. Toward an unbiased study of ionized outflows in z ~ 2 active galactic nuclei: survey overview and sample characterization. Astron. Astrophys. 620, A82 (2018).
Silverman, J. D. et al. A higher efficiency of converting gas to stars pushes galaxies at z ~ 1.6 well above the star-forming main sequence. Astrophys. J. Lett. 812, L23 (2015).
Puglisi, A. et al. The bright and dark sides of high-redshift starburst galaxies from Herschel and Subaru observations. Astrophys. J. Lett. 838, L18 (2017).
Calabrò, A. et al. Near-infrared emission lines in starburst galaxies at 0.5 < z < 0.9: discovery of a merger sequence of extreme obscurations. Astrophys. J. Lett. 862, L22 (2018).
Calabrò, A. et al. Deciphering an evolutionary sequence of merger stages in infrared-luminous starburst galaxies at z ~ 0.7. Astron. Astrophys. 623, A64 (2019).
Meurer, G. R., Heckman, T. M. & Calzetti, D. Dust absorption and the ultraviolet luminosity density at z ~ 3 as calibrated by local starburst galaxies. Astrophys. J. 521, 64–80 (1999).
Kartaltepe, J. S. et al. A multiwavelength study of a sample of 70 μm selected galaxies in the COSMOS Field. II. The role of mergers in galaxy evolution. Astrophys. J. 721, 98–123 (2010).
Pawlik, M. M. et al. Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages. Mon. Not. R. Astron. Soc. 456, 3032–3052 (2016).
Lotz, J. M., Jonsson, P., Cox, T. J. & Primack, J. R. Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers. Mon. Not. R. Astron. Soc. 391, 1137–1162 (2008).
Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. In Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series Vol. 411 (eds Bohlender, D. A. et al.) 251–254 (Astronomical Society of the Pacific, 2009).
Jin, S. et al. Discovery of four apparently cold dusty galaxies at z = 3.62–5.85 in the COSMOS field: direct evidence of cosmic microwave background impact on high-redshift galaxy observables. Astrophys. J. 887, 144 (2019).
Silverman, J. D. et al. The molecular gas content and fuel efficiency of starbursts at z ~ 1.6 with ALMA. Astrophys. J. 867, 92 (2018).
Carniani, S. et al. Ionised outflows in z ~ 2.4 quasar host galaxies. Astron. Astrophys. 580, A102 (2015).
Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21 (2014).
Hibbard, J. E. & Yun, M. S. in Cold Gas at High Redshift (eds Bremer, M. N. & Malcolm, N.) 47–53 (Kluwer Academic Publishers, 1996).
Roos, O., Juneau, S., Bournaud, F. & Gabor, J. M. Thermal and radiative active galactic nucleus feedback have a limited impact on star formation in high-redshift galaxies. Astrophys. J. 800, 19 (2015).
Biernacki, P. & Teyssier, R. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies. Mon. Not. R. Astron. Soc. 475, 5688–5703 (2018).
Costa, T., Sijacki, D. & Haehnelt, M. G. Feedback from active galactic nuclei: energy- versus momentum-driving. Mon. Not. R. Astron. Soc. 444, 2355–2376 (2014).
Costa, T., Sijacki, D. & Haehnelt, M. G. Fast cold gas in hot AGN outflows. Mon. Not. R. Astron. Soc. 448, L30–L34 (2015).
Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Quenching star formation with quasar outflows launched by trapped IR radiation. Mon. Not. R. Astron. Soc. 479, 2079–2111 (2018).
Richings, A. J. & Faucher-Giguère, C.-A. The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds. Mon. Not. R. Astron. Soc. 474, 3673–3699 (2018).
Richings, A. J. & Faucher-Giguère, C.-A. Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Mon. Not. R. Astron. Soc. 478, 3100–3119 (2018).
Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013).
Dekel, A., Sari, R. & Ceverino, D. Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703, 785–801 (2009).
Goerdt, T. et al. Gravity-driven Lyα blobs from cold streams into galaxies. Mon. Not. R. Astron. Soc. 407, 613–631 (2010).
Dekel, A. et al. Toy models for galaxy formation versus simulations. Mon. Not. R. Astron. Soc. 435, 999–1019 (2013).
Lusso, E. et al. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. Mon. Not. R. Astron. Soc. 425, 623–640 (2012).
Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).
Morganti, R. Archaeology of active galaxies across the electromagnetic spectrum. Nat. Astron. 1, 596–605 (2017).
Delvecchio, I. et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z ≲ 6. Astron. Astrophys. 602, A3 (2017).
Herrera Ruiz, N. et al. The faint radio sky: VLBA observations of the COSMOS field. Astron. Astrophys. 607, A132 (2017).
La Franca, F., Melini, G. & Fiore, F. Tools for computing the AGN feedback: radio-loudness distribution and the kinetic luminosity function. Astrophys. J. 718, 368–379 (2010).
Delvecchio, I. et al. The evolving AGN duty cycle in galaxies since z ~ 3 as encoded in the X-ray luminosity function. Astrophys. J. 892, 17 (2020).
Coogan, R. T. et al. Merger-driven star formation activity in Cl J1449+0856 at z = 1.99 as seen by ALMA and JVLA. Mon. Not. R. Astron. Soc. 479, 703–729 (2018).
Genzel, R. et al. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 543, 397–401 (2017).
Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).
Tadaki, K. et al. Bulge-forming galaxies with an extended rotating disk at z ~ 2. Astrophys. J. 834, 135 (2017).
Elbaz, D. et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 616, A110 (2018).
Calistro Rivera, G. et al. Resolving the ISM at the peak of cosmic star formation with ALMA: the distribution of CO and dust continuum in z ~ 2.5 submillimeter galaxies. Astrophys. J. 863, 56 (2018).
Franco, M. et al. GOODS-ALMA: The slow downfall of star-formation in z = 2–3 massive galaxies. Astron. Astrophys. 643, A30 (2020).
Tan, Q. et al. Dust and gas in luminous proto-cluster galaxies at z = 4.05: the case for different cosmic dust evolution in normal and starburst galaxies. Astron. Astrophys. 569, A98 (2014).
Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211–214 (2019).
Young, J. S. & Scoville, N. Z. Molecular gas in galaxies. Ann. Rev. Astron. Astrophys. 29, 581–625 (1991).
Weiß, A., Henkel, C., Downes, D. & Walter, F. Gas and dust in the Cloverleaf quasar at redshift 2.5. Astron. Astrophys. 409, L41–L45 (2003).
Spaans, M. & Meijerink, R. On the detection of high-redshift black holes with ALMA through CO and H2 emission. Astrophys. J. Lett. 678, L5 (2008).
Papadopoulos, P. P. et al. The molecular gas in luminous infrared galaxies I. CO lines, extreme physical conditions and their drivers. Mon. Not. R. Astron. Soc. 426, 2601–2629 (2012).
Papadopoulos, P. P. et al. Molecular gas heating mechanisms and star formation feedback in merger/starbursts: NGC 6240 and Arp 193 as case studies. Astrophys. J. 788, 153 (2014).
Weiß, A., Neininger, N., Hüttemeister, S. & Klein, U. The effect of violent star formation on the state of the molecular gas in M 82. Astron. Astrophys. 365, 571–587 (2001).
Bournaud, F. & Duc, P. A. From tidal dwarf galaxies to satellite galaxies. Astron. Astrophys. 456, 481–492 (2006).
Cicone, C. et al. The physics and the structure of the quasar-driven outflow in Mrk 231. Astron. Astrophys. 543, A99 (2012).
van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size-mass distribution since z = 3. Astrophys. J. 788, 28 (2014).
Aalto, S., Black, J. H., Booth, R. S. & Johansson, L. E. B. Peculiar molecular clouds in NGC 3256? Astron. Astrophys. 247, 291 (1991).
Sakamoto, K., Ho, P. T. P. & Peck, A. B. Imaging molecular gas in the luminous merger NGC 3256: detection of high-velocity gas and twin gas peaks in the double nucleus. Astrophys. J. 644, 862–878 (2006).
Aalto, S., Hüttemeister, S. & Polatidis, A. G. A molecular tidal tail in the Medusa minor merger. Astron. Astrophys. 372, L29–L32 (2001).
Tacconi, L. J. et al. Gas dynamics in the luminous merger NGC 6240. Astrophys. J. 524, 732–745 (1999).
Feruglio, C. et al. High resolution mapping of CO(1–0) in NGC 6240. Astron. Astrophys. 558, A87 (2013).
Toomre, A. & Toomre, J. Galactic bridges and tails. Astrophys. J. 178, 623–666 (1972).
Iono, D., Yun, M. S. & Mihos, J. C. Radial gas flows in colliding galaxies: connecting simulations and observations. Astrophys. J. 616, 199–220 (2004).
Treister, E. et al. The molecular gas in the NGC 6240 merging galaxy system at the highest spatial resolution. Astrophys. J. 890, 149 (2020).
Riechers, D. A. et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013).
Fixsen, D. J., Bennett, C. L. & Mather, J. C. COBE far infrared absolute spectrophotometer observations of galactic lines. Astrophys. J. 526, 207–214 (1999).
Acknowledgements
A.P. and E.D. thank A. Renzini for commenting on the manuscript and for useful discussion. A.P. acknowledges funding from Region Île-de-France and an Incoming CEA fellowship from the CEA-Enhanced Eurotalents programme, co-funded by the FP7 Marie-Skłodowska-Curie COFUND programme (grant agreement 600382). A.P. also gratefully acknowledges financial support from the STFC (grants ST/T000244/1 and ST/P000541/1). M.P. acknowledges support from the Comunidad de Madrid through the Atracción de Talento Investigador (grant 2018-T1/TIC-11035). S.J. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICIU) (grant AYA2017-84061-P), co-financed by FEDER (European Regional Development Funds).
Author information
Authors and Affiliations
Contributions
A.P. and E.D. reduced the data, interpreted the results and wrote the paper. All other authors contributed to the observing proposals, to the scientific discussion and elaboration of the results, and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Spectral energy distribution of ID2299.
Dark grey dots represent the observed multi-wavelength photometry and 1σ errors while dark grey arrows indicate 3σ upper limits. The black solid line is the best-fit spectral energy distribution of the source (SED, see Methods for details). The coloured lines represent individual contributions to the best-fit SED from attenuated stellar emission (orange), dust emission from star formation (dark red), AGN (teal) and radio emission (magenta).
Extended Data Fig. 2 Amplitude as a function of the uv distance for ID2299.
Different symbols and colours show the amplitude and 1σ error from the various transitions/continua (see legend). The black line is the best-fit Gaussian profile. The grey shaded area highlights the 1σ error associated to this model and it is comparable to the thickness of the black solid line. The size of the best-fit Gaussian profile and 1σ uncertainty are reported in the upper left corner of the plot.
Rights and permissions
About this article
Cite this article
Puglisi, A., Daddi, E., Brusa, M. et al. A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4. Nat Astron 5, 319–330 (2021). https://doi.org/10.1038/s41550-020-01268-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-01268-x