Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A peculiar hard X-ray counterpart of a Galactic fast radio burst

Abstract

Fast radio bursts (FRBs) are bright, millisecond-scale radio flashes of unknown physical origin1. Young, highly magnetized, isolated neutron stars—magnetars—have been suggested as the most promising candidates for FRB progenitors owing to their energetics and high X-ray flaring activity2,3. Here we report the detection with Konus-Wind of a hard X-ray event of 28 April 2020 temporally coincident with a bright, two-peak radio burst4,5 in the direction of Galactic magnetar SGR 1935+2154, with properties remarkably similar to those of FRBs. We show that the two peaks of the double-peaked X-ray burst coincide in time with the radio peaks and infer a common source and the association of these phenomena. An unusual hardness of the X-ray spectrum strongly distinguishes the 28 April event among multiple ‘ordinary’ flares from SGR 1935+2154. A recent non-detection5,6,7 of radio emission from about 100 typical soft bursts from SGR 1935+2154 favours the idea that bright, FRB-like magnetar signals are associated with rare, hard-spectrum X-ray bursts. The implied rate of these hard X-ray bursts (~0.04 yr−1 magnetar−1) appears consistent with the rate estimate4 of SGR 1935+2154-like radio bursts (0.007–0.04 yr−1 magnetar−1).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hard X-ray burst from SGR 1935+2154 of 28 April 2020.
Fig. 2: Radio to X-ray spectral energy distribution.
Fig. 3: Properties of the April 28 event and other SGR 1935+2154 X-ray bursts.

Data availability

The data that support the plots within this paper and other findings of this study are available from http://www.ioffe.ru/LEA/papers/RidnaiaNatAstr2020/data or from the corresponding author upon reasonable request. Links to the Wind predicted ephemeris and clock accuracy data are provided in the Methods (https://spdf.gsfc.nasa.gov/pub/data/wind/orbit/pre_or and ftps://pwgdata.sci.gsfc.nasa.gov/pub/wind_clock/wind_20-119-13-21-00.cc_rpt). Source data are provided with this paper.

Code availability

XSPEC is freely available online (https://heasarc.gsfc.nasa.gov/xanadu/xspec/). Python scripts used in the plot preparation are available from http://www.ioffe.ru/LEA/papers/RidnaiaNatAstr2020/data.

References

  1. 1.

    Cordes, J. M. & Chatterjee, S. Fast radio bursts: an extragalactic enigma. Annu. Rev. Astron. Astrophys. 57, 417–465 (2019).

    ADS  Google Scholar 

  2. 2.

    Popov, S. B. & Postnov, K. A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. In Evolution of Cosmic Objects through their Physical Activity 129–132 (NAS RA, 2010).

  3. 3.

    Beloborodov, A. M. A flaring magnetar in FRB 121102? Astrophys. J. 843, L26 (2017).

    ADS  Google Scholar 

  4. 4.

    The CHIME/FRB Collaboration A bright millisecond-duration radio burst from a Galactic magnetar. Nature https://doi.org/10.1038/s41586-020-2863-y (2020).

  5. 5.

    Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature https://doi.org/10.1038/s41586-020-2872-x (2020).

  6. 6.

    Lin, L. et al. Stringent upper limits on pulsed radio emission during an active bursting phase of the Galactic magnetar SGRJ1935+2154. Nature 587, 63–65 (2020).

    ADS  Google Scholar 

  7. 7.

    Kirsten, F. et al. Detection of two bright radio bursts from magnetar SGR 1935 + 2154. Nat. Astron. https://doi.org/10.1038/s41550-020-01246-3 (2020).

  8. 8.

    Mereghetti, S., Pons, J. & Melatos, A. Magnetars: properties, origin and evolution. Space Sci. Rev. 191, 315–338 (2015).

    ADS  Google Scholar 

  9. 9.

    Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS  Google Scholar 

  10. 10.

    Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. 392, L9 (1992).

    ADS  Google Scholar 

  11. 11.

    Mazets, E. P., Golentskii, S. V., Ilinskii, V. N., Aptekar, R. L. & Guryan, Y. A. Observations of a flaring X-ray pulsar in Dorado. Nature 282, 587–589 (1979).

    ADS  Google Scholar 

  12. 12.

    Mazets, E. P., Golentskii, S. V. & Guryan, Y. A. Soft gamma-ray bursts from the source B1900+14. Sov. Astron. Lett. 5, 343–344 (1979).

    ADS  Google Scholar 

  13. 13.

    Kouveliotou, C. et al. An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 - 20. Nature 393, 235–237 (1998).

    ADS  Google Scholar 

  14. 14.

    Olausen, S. A. & Kaspi, V. M. The McGill magnetar catalog. Astrophys. J. Suppl. 212, 22 (2014).

    Google Scholar 

  15. 15.

    Stamatikos, M., Malesani, D., Page, K. L. & Sakamoto, T. GRB 140705A: Swift detection of a short burst. GRB Coord. Netw. Circ. No. 16520 (2014).

  16. 16.

    Lien, A. Y. et al. GRB 140705A: Swift-BAT refined analysis of a possible newly discovered SGR 1935+2154. GRB Coord. Netw. Circ. No. 16522 (2014).

  17. 17.

    Israel, G. L. et al. The discovery, monitoring and environment of SGR J1935+2154. Mon. Not. R. Astron. Soc. 457, 3448–3456 (2016).

    ADS  Google Scholar 

  18. 18.

    Gaensler, B. M. GRB 140705A/SGR 1935+2154: probable association with supernova remnant G57.2+0.8. GRB Coord. Netw. Circ. No. 16533 (2014).

  19. 19.

    Zhou, P. et al. Revisiting the distance, environment and supernova properties of SNR G57.2+0.8 that hosts SGR 1935+2154. Preprint at http://arXiv.org/abs/2005.03517 (2020).

  20. 20.

    Kothes, R., Sun, X., Gaensler, B. & Reich, W. A radio continuum and polarization study of SNR G57.2+0.8 associated with magnetar SGR 1935+2154. Astrophys. J. 852, 54 (2018).

    ADS  Google Scholar 

  21. 21.

    Younes, G. et al. X-ray and radio observations of the magnetar SGR J1935+2154 during its 2014, 2015, and 2016 outbursts. Astrophys. J. 847, 85 (2017).

    ADS  Google Scholar 

  22. 22.

    Lin, L. et al. Burst properties of the most recurring transient magnetar SGR J1935+2154. Astrophys. J. 893, 156 (2020).

    ADS  Google Scholar 

  23. 23.

    Ricciarini, S. et al. High bursting activity of SGR 1935+2154: CGBM observations. GRB Coord. Netw. Circ. No. 27663 (2020).

  24. 24.

    Palmer, D. M. A forest of bursts from SGR 1935+2154. GRB Coord. Netw. Circ. No. 27665 (2020).

  25. 25.

    Ridnaia, A. et al. Konus-Wind observation of a very intense bursting activity of SGR 1935+2154. GRB Coord. Netw. Circ. No. 27667 (2020).

  26. 26.

    Mereghetti, S. et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. 898, L29 (2020).

    ADS  Google Scholar 

  27. 27.

    Tavani, M. et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Preprint at http://arXiv.org/abs/2005.12164 (2020).

  28. 28.

    Ridnaia, A. et al. Konus-Wind observation of hard X-ray counterpart of the radio burst from SGR 1935+2154. GRB Coord. Netw. Circ. No. 27669 (2020).

  29. 29.

    Li, C. K. et al. Identification of a non-thermal X-ray burst with the Galactic magnetar SGR 1935+2154 and a fast radio burst with Insight-HXMT. Preprint at http://arXiv.org/abs/2005.11071 (2020).

  30. 30.

    Law, C. J. et al. A multi-telescope campaign on FRB 121102: implications for the FRB Population. Astrophys. J. 850, 76 (2017).

    ADS  Google Scholar 

  31. 31.

    Gourdji, K. et al. A sample of low-energy bursts from FRB 121102. Astrophys. J. 877, L19 (2019).

    ADS  Google Scholar 

  32. 32.

    Kumar, P. et al. Extremely band-limited repetition from a fast radio burst source. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/staa3436 (2020).

  33. 33.

    Hurley, K. et al. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005).

    ADS  Google Scholar 

  34. 34.

    Frederiks, D. D. et al. Giant flare in SGR 1806-20 and its Compton reflection from the Moon. Astron. Lett. 33, 1–18 (2007).

    ADS  Google Scholar 

  35. 35.

    Svinkin, D. S., Hurley, K., Aptekar, R. L., Golenetskii, S. V. & Frederiks, D. D. A search for giant flares from soft gamma-ray repeaters in nearby galaxies in the Konus-WIND short burst sample. Mon. Not. R. Astron. Soc. 447, 1028–1032 (2015).

    ADS  Google Scholar 

  36. 36.

    Rubio-Herrera, E., Stappers, B. W., Hessels, J. W. T. & Braun, R. A search for giant flares from soft gamma-ray repeaters in nearby galaxies in the Konus-WIND short burst sample. Mon. Not. R. Astron. Soc. 428, 2857–2873 (2013).

    ADS  Google Scholar 

  37. 37.

    Mazets, E. P. et al. A giant flare from a soft gamma repeater in the Andromeda galaxy (M31). Astrophys. J. 680, 545–549 (2008).

    ADS  Google Scholar 

  38. 38.

    Frederiks, D. D. et al. On the possibility of identifying the short hard burst GRB 051103 with a giant flare from a soft gamma repeater in the M81 group of galaxies. Astron. Lett. 33, 19–24 (2007).

    ADS  Google Scholar 

  39. 39.

    Svinkin, D. et al. Improved IPN error box for GRB 200415A (consistent with the Sculptor Galaxy). GRB Coord. Netw. Circ. No. 27595 (2020).

  40. 40.

    Frederiks, D. et al. Konus-Wind observation of GRB 200415A (a magnetar Giant Flare in Sculptor Galaxy?). GRB Coord. Netw. Circ. No. 27596 (2020).

  41. 41.

    Kozlova, A. V. et al. The first observation of an intermediate flare from SGR 1935+2154. Mon. Not. R. Astron. Soc. 460, 2008–2014 (2016).

    ADS  Google Scholar 

  42. 42.

    Aptekar, R. et al. Konus-W gamma-ray burst experiment for the GGS wind spacecraft. Space Sci. Rev. 120, 265–272 (1995).

    ADS  Google Scholar 

  43. 43.

    Harten, R. & Clark, K. The design features of the GGS wind and polar spacecraft. Space Sci. Rev. 71, 23–40 (1995).

    ADS  Google Scholar 

  44. 44.

    Mazets, E. P. et al. Activity of the soft gamma repeater SGR 1900+14 in 1998 from Konus-Wind observations: 2. The giant August 27 outburst. Astron. Lett. 25, 635–648 (1999).

    ADS  Google Scholar 

  45. 45.

    Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    ADS  Google Scholar 

  46. 46.

    Scargle, J. D. Studies in astronomical time series analysis. V. Bayesian blocks, a new method to analyze structure in photon counting data. Astrophys. J. 504, 405–418 (1998).

    ADS  Google Scholar 

  47. 47.

    Arnaud, K. A. et al. XSPEC: the first ten years. ASP Conf. Ser. 101, 17 (1996).

    ADS  Google Scholar 

  48. 48.

    Band, A. J. et al. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys. J. 413, 281–292 (1993).

    ADS  Google Scholar 

  49. 49.

    Feroci, M. et al. Broadband X-ray spectra of short bursts from SGR 1900+14. Astrophys. J. 612, 408–413 (2004).

    ADS  Google Scholar 

  50. 50.

    Olive, J.-F. et al. Time-resolved X-ray spectral modeling of an intermediate burst from SGR 1900+14 observed by HETE-2 FREGATE and WXM. Astrophys. J. 616, 1148–1158 (2004).

    ADS  Google Scholar 

  51. 51.

    Lin, L. et al. Broadband spectral investigations of SGR J1550-5418 bursts. Astrophys. J. 756, 54 (2012).

    ADS  Google Scholar 

  52. 52.

    van der Horst, A. J. et al. SGR J1550-5418 bursts detected with the fermi gamma-ray burst monitor during its most prolific activity. Astrophys. J. 749, 122 (2012).

    ADS  Google Scholar 

  53. 53.

    Oliphant, T. E. Guide to NumPy (2006); https://web.mit.edu/dvp/Public/numpybook.pdf

  54. 54.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  55. 55.

    Lyutikov, M. & Popov, S. Fast radio bursts from reconnection events in magnetar magnetospheres. Preprint at http://arXiv.org/abs/2005.05093 (2020).

  56. 56.

    Lu, W., Kumar, P. & Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 498, 1397–1405 (2020).

    ADS  Google Scholar 

  57. 57.

    Lyubarsky, Y. U. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9–L13 (2014).

    ADS  Google Scholar 

  58. 58.

    Waxman, E. On the origin of fast radio bursts (FRBs). Astrophys. J. 842, 34 (2017).

    ADS  Google Scholar 

  59. 59.

    Margalit, B. et al. Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Mon. Not. R. Astron. Soc. 481, 2407–2426 (2018).

    ADS  Google Scholar 

  60. 60.

    Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    ADS  Google Scholar 

  61. 61.

    Lyubarsky, Y. U. Fast radio bursts from reconnection in a magnetar magnetosphere. Astrophys. J. 897, 1 (2020).

    ADS  Google Scholar 

  62. 62.

    Sari, R., Piran, T. & R, N. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17–L20 (1998).

    ADS  Google Scholar 

  63. 63.

    Piran, T. Gamma-ray bursts and the fireball model. Phys. Rep. 314, 575–667 (1999).

    ADS  Google Scholar 

  64. 64.

    Mészáros, P. Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006).

    ADS  Google Scholar 

  65. 65.

    Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015).

    ADS  Google Scholar 

  66. 66.

    Pe’er, A. & Zhang, B. Plasmas in gamma-ray bursts: particle acceleration, magnetic fields, radiative processes and environments. Phys. Rep. 7, 33 (2019).

    Google Scholar 

  67. 67.

    Bykov, A. et al. Particle acceleration in relativistic outflows. Space Sci. Rev. 173, 309–339 (2012).

    ADS  Google Scholar 

  68. 68.

    Blandford, R., Yuan, Y., Hoshino, M. & Sironi, L. Magnetoluminescence. Space Sci. Rev. 207, 291–317 (2017).

    ADS  Google Scholar 

  69. 69.

    Ghisellini, G. Synchrotron masers and fast radio bursts. Mon. Not. R. Astron. Soc. 465, L30–L33 (2017).

    ADS  Google Scholar 

  70. 70.

    Lyutikov, M. Radio emission from magnetars. Astrophys. J. 580, L65–L68 (2002).

    ADS  Google Scholar 

  71. 71.

    Lyutikov, M. Radius-to-frequency mapping and FRB frequency drifts. Astrophys. J. 889, 135 (2020).

    ADS  Google Scholar 

  72. 72.

    Aptekar, R. L. et al. Konus catalog of SGR activity to 2000. Astrophys. J. Suppl. 137, 227 (2001).

    ADS  Google Scholar 

  73. 73.

    Mazets, E. P. et al. Unusual burst emission from the new soft gamma repeater SGR 1627-41. Astrophys. J. 519, L151–L153 (1999).

    ADS  Google Scholar 

  74. 74.

    Golenetskii, S. et al. Konus-Wind detection of very bright SGR-like burst on January 25, 2009. GRB Coord. Netw. Circ. No. 8851 (2009).

  75. 75.

    Golenetskii, S. et al. Konus-Wind observation of AXP/SGR 1E1547.0-5408 bursting activity. GRB Coord. Netw. Circ. No. 8858 (2009).

  76. 76.

    Golenetskii, S. et al. Konus-Wind observation of bright burst from AXP/SGR 1E1547.0-5408 on January 29. GRB Coord. Netw. Circ. No. 8863 (2009).

  77. 77.

    Burgay, M. et al. Back to radio: Parkes detection of radio pulses from the transient AXP 1E1547.0-5408. Astron. Telegr. No. 1913 (2009).

  78. 78.

    Woods, P. M. et al. Hard burst emission from the soft gamma repeater SGR 1900+14. Astrophys. J. 527, L47–L50 (1999).

    ADS  Google Scholar 

  79. 79.

    Baldovin, C. et al. INTEGRAL observes continued activity from AXP 1E1547.0-5408. Astron. Telegr. No. 1908 (2009).

  80. 80.

    Mereghetti, S. et al. Strong bursts from the anomalous X-ray pulsar 1E 1547.0-5408 observed with the INTEGRAL/SPI anti-coincidence shield. Astrophys. J. 649, L74 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

S.P. acknowledges support from the Program of Development of the M. V. Lomonosov Moscow State University (Leading Scientific School ‘Physics of stars, relativistic objects, and galaxies’). The calculations were partially done on computers of the RAS JSCC and St Petersburg department of the RAS JSCC and at the Tornado subsystem of the St. Petersburg Polytechnic University supercomputing centre. The Konus-Wind experiment is supported by the Russian State Space Agency ROSCOSMOS.

Author information

Affiliations

Authors

Contributions

A.R., D.S. and D.F. performed the KW data analysis. A.R., D.S., D.F., A.B. and S.P. contributed to the discussion of the results in the context of KW magnetar observations, magnetar emission models and FRB–magnetar connections. A.L. contributed to the KW spectral analysis. S.G., A.T. and M.U. contributed to the KW data reduction. R.A., S.G. and D.F. contributed to the KW design and calibrations. R.A. was the principal investigator of the KW experiment and T.L.C. was the co-PI from the American side. A.R., D.S. and D.F. wrote the manuscript with contributions from A.B. and S.P. All co-authors provided comments on the final version of the manuscript.

Corresponding author

Correspondence to A. Ridnaia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temporal parameters.

the burst start time relative to T0 (2nd column), the burst end time relative to T0 (3rd column), the total burst duration (4th column), T50 and T90 durations (5th and 6th columns, respective-ly) along with their 68% confidence intervals are given for specif-ic energy band (1st column).

Extended Data Fig. 2 Spectral fit results with thermal models (BB and 2BB) for two spectra.

time-averaged spectrum (0.0 - 0.256 s) and the peak spectrum (0.0 - 0.064 s), measured near the peak count rate. The times are given relative to T0. The errors are given at 90% CL. Model normalizations are proportional to the surface area \({R}_{km}^{2}/{d}_{10}^{2}\), where Rkm is the source radius in km and d10 is the distance to the source in units of 10 kpc.

Extended Data Fig. 3 Spectral fit results with non-thermal models (PL and CPL) for two spectra.

time-averaged spectrum (0.0 - 0.256 s) and the peak spectrum (0.0 - 0.064 s), measured near the peak count rate. The times are given relative to T0. The errors are given at 90% CL.

Extended Data Fig. 4 Spectral parameters (CPL model) and energetics of 22 SGR 1935+2154 bursts detected by KW.

The errors are given at 68% CL. The fluences and the peak fluxes are estimated in the 20 - 500 keV band. a The FRB burst. Source data

Extended Data Fig. 5 Peak energies Ep (CPL model) and energy fluences of hard magnetar bursts detected by KW.

The errors are given at 68% CL. The fluences are estimated in the 20 - 500 keV band. a Two hard bursts from SGR 1900+14 were also reported by BATSE78. b The parameters were estimated using optically thin thermal bremsstrahlung (OTTB) spectrum (f(E) E−1exp(− E/kTOTTB)) c The 2009-01-25 burst from SGR 1550-5418 was also reported by INTEGRAL79,80 [cite ATel1908,Mereghetti2009]. d The 2009-01-29 burst from SGR 1550-5418 was also detected by Fermi-GBM (https://gammaray.nsstc.nasa.gov/gbm/science/magnetars.html). e The FRB burst (this work).

Extended Data Fig. 6 Peak energies Ep vs. total energy fluences of 250 bright magnetar bursts detected by Konus-Wind since November 1994.

Six bursts marked by stars have unusually high Ep values (Extend-ed Data Figure 5): two bursts from SGR 1900+14 (orange), one from SGR 1627-41 (blue), two from SGR 1550-5418 (green), and the April 28 event (red). The error bars are given at the 68% confidence level. For extremely bright bursts from SGR 1627-41 and SGR 1550-5418 (shown by stars) the error bars represent systematic uncer-tainties due to the high count rate, which exceed statistical er-rors.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Source data

Source Data Extended Data Fig. 4

Spectral parameters (CPL model) and energetics of 22 SGR 1935+2154 bursts detected by KW.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ridnaia, A., Svinkin, D., Frederiks, D. et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat Astron 5, 372–377 (2021). https://doi.org/10.1038/s41550-020-01265-0

Download citation

Further reading

  • Detection of two bright radio bursts from magnetar SGR 1935 + 2154

    • F. Kirsten
    • , M. P. Snelders
    • , M. Jenkins
    • , K. Nimmo
    • , J. van den Eijnden
    • , J. W. T. Hessels
    • , M. P. Gawroński
    •  & J. Yang

    Nature Astronomy (2021)

  • Broadband X-ray burst spectroscopy of the fast-radio-burst-emitting Galactic magnetar

    • G. Younes
    • , M. G. Baring
    • , C. Kouveliotou
    • , Z. Arzoumanian
    • , T. Enoto
    • , J. Doty
    • , K. C. Gendreau
    • , E. Göğüş
    • , S. Guillot
    • , T. Güver
    • , A. K. Harding
    • , W. C. G. Ho
    • , A. J. van der Horst
    • , C.-P. Hu
    • , G. K. Jaisawal
    • , Y. Kaneko
    • , B. J. LaMarr
    • , L. Lin
    • , W. Majid
    • , T. Okajima
    • , J. Pope
    • , P. S. Ray
    • , O. J. Roberts
    • , M. Saylor
    • , J. F. Steiner
    •  & Z. Wadiasingh

    Nature Astronomy (2021)

  • A Nearby Repeating Fast Radio Burst in the Direction of M81

    • M. Bhardwaj
    • , B. M. Gaensler
    • , V. M. Kaspi
    • , T. L. Landecker
    • , R. Mckinven
    • , D. Michilli
    • , Z. Pleunis
    • , S. P. Tendulkar
    • , B. C. Andersen
    • , P. J. Boyle
    • , T. Cassanelli
    • , P. Chawla
    • , A. Cook
    • , M. Dobbs
    • , E. Fonseca
    • , J. Kaczmarek
    • , C. Leung
    • , K. Masui
    • , M. Mnchmeyer
    • , C. Ng
    • , M. Rafiei-Ravandi
    • , P. Scholz
    • , K. Shin
    • , K. M. Smith
    • , I. H. Stairs
    •  & A. V. Zwaniga

    The Astrophysical Journal Letters (2021)

  • An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts

    • M. Tavani
    • , C. Casentini
    • , A. Ursi
    • , F. Verrecchia
    • , A. Addis
    • , L. A. Antonelli
    • , A. Argan
    • , G. Barbiellini
    • , L. Baroncelli
    • , G. Bernardi
    • , G. Bianchi
    • , A. Bulgarelli
    • , P. Caraveo
    • , M. Cardillo
    • , P. W. Cattaneo
    • , A. W. Chen
    • , E. Costa
    • , E. Del Monte
    • , G. Di Cocco
    • , G. Di Persio
    • , I. Donnarumma
    • , Y. Evangelista
    • , M. Feroci
    • , A. Ferrari
    • , V. Fioretti
    • , F. Fuschino
    • , M. Galli
    • , F. Gianotti
    • , A. Giuliani
    • , C. Labanti
    • , F. Lazzarotto
    • , P. Lipari
    • , F. Longo
    • , F. Lucarelli
    • , A. Magro
    • , M. Marisaldi
    • , S. Mereghetti
    • , E. Morelli
    • , A. Morselli
    • , G. Naldi
    • , L. Pacciani
    • , N. Parmiggiani
    • , F. Paoletti
    • , A. Pellizzoni
    • , M. Perri
    • , F. Perotti
    • , G. Piano
    • , P. Picozza
    • , M. Pilia
    • , C. Pittori
    • , S. Puccetti
    • , G. Pupillo
    • , M. Rapisarda
    • , A. Rappoldi
    • , A. Rubini
    • , G. Setti
    • , P. Soffitta
    • , M. Trifoglio
    • , A. Trois
    • , S. Vercellone
    • , V. Vittorini
    • , P. Giommi
    •  & F. D’Amico

    Nature Astronomy (2021)

  • HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428

    • C. K. Li
    • , L. Lin
    • , S. L. Xiong
    • , M. Y. Ge
    • , X. B. Li
    • , T. P. Li
    • , F. J. Lu
    • , S. N. Zhang
    • , Y. L. Tuo
    • , Y. Nang
    • , B. Zhang
    • , S. Xiao
    • , Y. Chen
    • , L. M. Song
    • , Y. P. Xu
    • , C. Z. Liu
    • , S. M. Jia
    • , X. L. Cao
    • , J. L. Qu
    • , S. Zhang
    • , Y. D. Gu
    • , J. Y. Liao
    • , X. F. Zhao
    • , Y. Tan
    • , J. Y. Nie
    • , H. S. Zhao
    • , S. J. Zheng
    • , Y. G. Zheng
    • , Q. Luo
    • , C. Cai
    • , B. Li
    • , W. C. Xue
    • , Q. C. Bu
    • , Z. Chang
    • , G. Chen
    • , L. Chen
    • , T. X. Chen
    • , Y. B. Chen
    • , Y. P. Chen
    • , W. Cui
    • , W. W. Cui
    • , J. K. Deng
    • , Y. W. Dong
    • , Y. Y. Du
    • , M. X. Fu
    • , G. H. Gao
    • , H. Gao
    • , M. Gao
    • , Y. D. Gu
    • , J. Guan
    • , C. C. Guo
    • , D. W. Han
    • , Y. Huang
    • , J. Huo
    • , L. H. Jiang
    • , W. C. Jiang
    • , J. Jin
    • , Y. J. Jin
    • , L. D. Kong
    • , G. Li
    • , M. S. Li
    • , W. Li
    • , X. Li
    • , X. F. Li
    • , Y. G. Li
    • , Z. W. Li
    • , X. H. Liang
    • , B. S. Liu
    • , G. Q. Liu
    • , H. W. Liu
    • , X. J. Liu
    • , Y. N. Liu
    • , B. Lu
    • , X. F. Lu
    • , T. Luo
    • , X. Ma
    • , B. Meng
    • , G. Ou
    • , N. Sai
    • , R. C. Shang
    • , X. Y. Song
    • , L. Sun
    • , L. Tao
    • , C. Wang
    • , G. F. Wang
    • , J. Wang
    • , W. S. Wang
    • , Y. S. Wang
    • , X. Y. Wen
    • , B. B. Wu
    • , B. Y. Wu
    • , M. Wu
    • , G. C. Xiao
    • , H. Xu
    • , J. W. Yang
    • , S. Yang
    • , Y. J. Yang
    • , Yi-Jung Yang
    • , Q. B. Yi
    • , Q. Q. Yin
    • , Y. You
    • , A. M. Zhang
    • , C. M. Zhang
    • , F. Zhang
    • , H. M. Zhang
    • , J. Zhang
    • , T. Zhang
    • , W. Zhang
    • , W. C. Zhang
    • , W. Z. Zhang
    • , Y. Zhang
    • , Yue Zhang
    • , Y. F. Zhang
    • , Y. J. Zhang
    • , Z. Zhang
    • , Zhi Zhang
    • , Z. L. Zhang
    • , D. K. Zhou
    • , J. F. Zhou
    • , Y. Zhu
    • , Y. X. Zhu
    •  & R. L. Zhuang

    Nature Astronomy (2021)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing