Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An observed correlation between galaxy spins and initial conditions

An Author Correction to this article was published on 08 March 2021

This article has been updated

Abstract

The directions of the galaxy angular momenta can be predicted from the initial conditions of the early Universe through the tidal torque. In simulations, these directions are well preserved through cosmic time, consistent with expectations of angular momentum conservation. We find evidence, statistically significant at ~2.7σ, of correlation between observed oriented directions of galaxy angular momentum vectors and their predictions based on the initial density field reconstructed from the positions of Sloan Digital Sky Survey galaxies. This study presents evidence for a correlation between directions of galaxy angular momenta and cosmic initial conditions, and opens a way to use measurements of galaxy spins to probe fundamental physics in the early Universe.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Origin of the galaxy spin.
Fig. 2: Components of galaxy spin.
Fig. 3: Excess of galaxies in bins of cos θRg.
Fig. 4: Detected correlation strength μRg as a function of the smoothing scale r.
Fig. 5: Significance of the detection, as a function of the GZ classification threshold \({\mathcal{T}}\).

Data availability

Most of the data used in this work is public and can be obtained from https://skyserver.sdss.org/CasJobs/, https://datacentral.org.au/services/download/ and through Marvin (https://www.sdss.org/dr15/manga/marvin/). The resulting catalogue of galaxy spins as measured from data and as reconstructed from the ELUCID initial conditions (for three different smoothing scales) can be downloaded from https://doi.org/10.5281/zenodo.4451358. The source data for Figs. 3–5 can be obtained at the same address.

Code availability

The codes used in this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. Huchra, J., Davis, M., Latham, D. & Tonry, J. X-ray spectra of active galactic nuclei. Astrophys. J. Suppl. Ser. 52, 89–119 (1983).

    ADS  Google Scholar 

  2. Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039–1063 (2001).

    ADS  Google Scholar 

  3. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    ADS  Google Scholar 

  4. Yu, H.-R., Pen, U.-L. & Wang, X. Parity-odd neutrino torque detection. Phys. Rev. D 99, 123532 (2019).

    ADS  Google Scholar 

  5. Yu, H.-R. et al. Probing primordial chirality with galaxy spins. Phys. Rev. Lett. 124, 101302 (2020).

    ADS  Google Scholar 

  6. Schmidt, F., Chisari, N. E. & Dvorkin, C. Imprint of inflation on galaxy shape correlations. J. Cosmol. Astropart. Phys. 1510, 032 (2015).

    ADS  MathSciNet  Google Scholar 

  7. Biagetti, M. & Orlando, G. Primordial gravitational waves from galaxy intrinsic alignments. J. Cosmol. Astropart. Phys. 07, 005 (2020).

    ADS  MathSciNet  Google Scholar 

  8. Jasche, J. & Wandelt, B. D. Bayesian physical reconstruction of initial conditions from large-scale structure surveys. Mon. Not. R. Astron. Soc. 432, 894–913 (2013).

    ADS  Google Scholar 

  9. Wang, H., Mo, H. J., Yang, X., Jing, Y. P. & Lin, W. P. ELUCID—exploring the local universe with the reconstructed initial density field. I. Hamiltonian Markov chain Monte Carlo method with particle mesh dynamics. Astrophys. J. 794, 94 (2014).

    ADS  Google Scholar 

  10. Zhu, H.-M., Yu, Y., Pen, U.-L., Chen, X. & Yu, H.-R. Nonlinear reconstruction. Phys. Rev. D 96, 123502 (2017).

    ADS  Google Scholar 

  11. Schmittfull, M., Baldauf, T. & Zaldarriaga, M. Iterative initial condition reconstruction. Phys. Rev. D 96, 023505 (2017).

    ADS  Google Scholar 

  12. Hada, R. & Eisenstein, D. J. An iterative reconstruction of cosmological initial density fields. Mon. Not. R. Astron. Soc. 478, 1866–1874 (2018).

    ADS  Google Scholar 

  13. Zhu, H.-M., White, M., Ferraro, S. & Schaan, E. Reconstruction with velocities. Mon. Not. R. Astron. Soc. 494, 4244–4254 (2020).

    ADS  Google Scholar 

  14. Lee, J. & Pen, U.-L. Galaxy spin statistics and spin-density correlation. Astrophys. J. 555, 106–124 (2001).

    ADS  Google Scholar 

  15. Lee, J. & Pen, U.-L. Cosmic shear from galaxy spins. Astrophys. J. 532, L5–L8 (2000).

    ADS  Google Scholar 

  16. Kirk, D. et al. Galaxy alignments: observations and impact on cosmology. Space Sci. Rev. 193, 139–211 (2015).

    ADS  Google Scholar 

  17. Peebles, P. Origin of the angular momentum of galaxies. Astrophys. J. 155, 393–401 (1969).

    ADS  Google Scholar 

  18. Doroshkevich, A. G. Spatial structure of perturbations and origin of galactic rotation in fluctuation theory. Astrophysics 6, 320–330 (1970).

    ADS  MathSciNet  Google Scholar 

  19. White, S. D. M. Angular momentum growth in protogalaxies. Astrophys. J. 286, 38–41 (1984).

    ADS  Google Scholar 

  20. Porciani, C., Dekel, A. & Hoffman, Y. Testing tidal-torque theory—I. Spin amplitude and direction. Mon. Not. R. Astron. Soc. 332, 325–338 (2002).

    ADS  Google Scholar 

  21. Porciani, C., Dekel, A. & Hoffman, Y. Testing tidal-torque theory—2. Alignment of inertia and shear and the characteristics of proto-haloes. Mon. Not. R. Astron. Soc. 332, 339–351 (2002).

    ADS  Google Scholar 

  22. Schaefer, B. M. Review: galactic angular momenta and angular momentum correlations in the cosmological large-scale structure. Int. J. Mod. Phys. D. 18, 173–222 (2009).

    ADS  MATH  Google Scholar 

  23. Teklu, A. F. et al. Connecting angular momentum and galactic dynamics: the complex interplay between spin, mass, and morphology. Astrophys. J. 812, 29 (2015).

    ADS  Google Scholar 

  24. Jiang, F. et al. Is the dark-matter halo spin a predictor of galaxy spin and size? Mon. Not. R. Astron. Soc. 488, 4801–4815 (2019).

    ADS  Google Scholar 

  25. Jones, B. J., van de Weygaert, R. & Aragon-Calvo, M. A. Fossil evidence for spin alignment of SDSS galaxies in filaments. Mon. Not. R. Astron. Soc. 408, 897–918 (2010).

    ADS  Google Scholar 

  26. Krolewski, A. et al. Alignment between filaments and galaxy spins from the MaNGA integral-field survey. Astrophys. J. 876, 52 (2019).

    ADS  Google Scholar 

  27. Welker, C. et al. The SAMI galaxy survey: first detection of a transition in spin orientation with respect to cosmic filaments in the stellar kinematics of galaxies. Mon. Not. R. Astron. Soc. 491, 2864–2884 (2020).

    ADS  Google Scholar 

  28. Codis, S., Pichon, C. & Pogosyan, D. Spin alignments within the cosmic web: a theory of constrained tidal torques near filaments. Mon. Not. R. Astron. Soc. 452, 3369–3393 (2015).

    ADS  Google Scholar 

  29. Wang, H. et al. ELUCID—exploring the local universe with reconstructed initial density field. III. Constrained simulation in the SDSS volume. Astrophys. J. 831, 164 (2016).

    ADS  Google Scholar 

  30. Lintott, C. J. et al. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 389, 1179–1189 (2008).

    ADS  Google Scholar 

  31. Bundy, K. et al. Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory. Astrophys. J. 798, 7 (2015).

    ADS  Google Scholar 

  32. Scott, N. et al. The SAMI galaxy survey: data release two with absorption-line physics value-added products. Mon. Not. R. Astron. Soc. 481, 2299–2319 (2018).

    ADS  Google Scholar 

  33. Land, K. et al. Galaxy Zoo: the large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 388, 1686–1692 (2008).

    ADS  Google Scholar 

  34. Levi, M. et al. The DESI experiment, a whitepaper for Snowmass 2013. Preprint at https://arxiv.org/abs/1308.0847 (2013).

  35. Bryant, J. J. et al. Hector: a new massively multiplexed IFU instrument for the Anglo–Australian Telescope. Proc. Soc. Photogr. Instrum. Eng. 9908, 99081F (2016).

    Google Scholar 

  36. Aragon-Calvo, M. A., van de Weygaert, R., Jones, B. J. & van der Hulst, J. Spin alignment of dark matter haloes in filaments and walls. Astrophys. J. Lett. 655, L5–L8 (2007).

    ADS  Google Scholar 

  37. Hahn, O., Carollo, C., Porciani, C. & Dekel, A. The evolution of dark matter halo properties in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 381, 41–51 (2007).

    ADS  Google Scholar 

  38. Codis, S. et al. Connecting the cosmic web to the spin of dark halos: implications for galaxy formation. Mon. Not. R. Astron. Soc. 427, 3320–3336 (2012).

    ADS  Google Scholar 

  39. Bett, P. E. & Frenk, C. S. Spin flips—I. Evolution of the angular momentum orientation of Milky Way-mass dark matter haloes. Mon. Not. R. Astron. Soc. 420, 3324–3333 (2012).

    ADS  Google Scholar 

  40. Bett, P. E. & Frenk, C. S. Spin flips—II. Evolution of dark matter halo spin orientation, and its correlation with major mergers. Mon. Not. R. Astron. Soc. 461, 1338–1355 (2016).

    ADS  Google Scholar 

  41. Tempel, E. & Libeskind, N. I. Galaxy spin alignment in filaments and sheets: observational evidence. Astrophys. J. Lett. 775, L42 (2013).

    ADS  Google Scholar 

  42. Veena, P. G. et al. The cosmic ballet: spin and shape alignments of haloes in the cosmic web. Mon. Not. R. Astron. Soc. 481, 414–438 (2018).

    ADS  Google Scholar 

  43. Ganeshaiah Veena, P., Cautun, M., Tempel, E., van de Weygaert, R. & Frenk, C. S. The cosmic ballet II: spin alignment of galaxies and haloes with large-scale filaments in the EAGLE simulation. Mon. Not. R. Astron. Soc. 487, 1607–1625 (2019).

    ADS  Google Scholar 

  44. Wang, P., Guo, Q., Kang, X. & Libeskind, N. I. The spin alignment of galaxies with the large-scale tidal field in hydrodynamic simulations. Astrophys. J. 866, 138 (2018).

    ADS  Google Scholar 

  45. Yang, X. et al. Galaxy groups in the SDSS DR4. I. The catalogue and basic properties. Astrophys. J. 671, 153–170 (2007).

    ADS  Google Scholar 

  46. Pasha, I. I. & Smirnov, M. A. On the direction of rotation of the spirals in galaxies. Astrophys. Space Sci. 86, 215–224 (1982).

    ADS  Google Scholar 

  47. Blanton, M. R. et al. Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies and the distant Universe. Astron. J. 154, 28 (2017).

    ADS  Google Scholar 

  48. Aguado, D. S. et al. The fifteenth data release of the Sloan Digital Sky Surveys: first release of MaNGA-derived quantities, data visualization tools, and stellar library. Astrophys. J. Suppl. Ser. 240, 23 (2019).

    ADS  Google Scholar 

  49. Cherinka, B. et al. Marvin: a tool kit for streamlined access and visualization of the SDSS-IV MaNGA data set. Astrophys. J. 158, 74 (2019).

    Google Scholar 

  50. Bryant, J. J. et al. The SAMI galaxy survey: instrument specification and target selection. Mon. Not. R. Astron. Soc. 447, 2857–2879 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Wang for providing the catalogue of ELUCID galaxy groups and useful discussions. We thank C. Pichon and M. Neyrinck for numerous very useful suggestions during the peer review process. We thank J. Dubinski for proofreading our manuscript and useful comments. P.M., H.-R.Y. and U.-L.P. were supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grant CITA 490888. H.-R.Y. additionally acknowledges support from National Natural Science Foundation of China grant 11903021. U.-L.P. received additional support from Ontario Research Fund-research Excellence Program grant RE09-024, NSERC grants RGPIN-2019-067, 523638-201, CRDPJ 523638-2, Canadian Institute for Advanced Research grants FS21-146 and APPT, Canadian Foundation for Innovation grant IOF-33526, Simons Foundation grant 568354, Thoth Technology Inc., and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper. U.-L.P., P.M. and H.-R.Y. initiated the project. H.-R.Y. and P.M. wrote the computer codes used in the study. P.M. and Y.X. analysed the data. P.M., H.-R.Y. and U.-L.P. wrote the manuscript. All authors participated in scientific discussions that determined the course of the project and influenced the final contents and scope of this manuscript.

Corresponding authors

Correspondence to Pavel Motloch or Hao-Ran Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Mark Neyrinck, Rien van de Weijgaert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motloch, P., Yu, HR., Pen, UL. et al. An observed correlation between galaxy spins and initial conditions. Nat Astron 5, 283–288 (2021). https://doi.org/10.1038/s41550-020-01262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-01262-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing