Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detection of the Milky Way reflex motion due to the Large Magellanic Cloud infall

Abstract

The Large Magellanic Cloud is the most massive satellite galaxy of the Milky Way, with an estimated mass exceeding a tenth of the mass of the Milky Way1,2,3,4,5. Just past its closest approach of about 50 kpc, and flying past the Milky Way at an astonishing speed of 327 km s−1 (ref. 6), the Large Magellanic Cloud can affect our Galaxy in a number of ways, including dislodging the Milky Way disk from the Galactic centre of mass7,8,9. Here, we report evidence that the Milky Way disk is moving with respect to stellar tracers in the outer halo in a direction that points at an earlier location on the Large Magellanic Cloud trajectory. The resulting reflex motion is detected in the kinematics of outer halo stars and Milky Way satellite galaxies with accurate distances, proper motions and line-of-sight velocities. Our results indicate that dynamical models of our Galaxy cannot neglect gravitational perturbations induced by the Large Magellanic Cloud infall, nor can observations of the stellar halo be treated in a reference frame that does not correct for disk reflex motion. Future spectroscopic surveys of the stellar halo combined with Gaia astrometry will allow for sophisticated modelling of the Large Magellanic Cloud trajectory across the Milky Way, constraining the dark matter distribution in both galaxies with unprecedented detail.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Posteriors on the direction of the MW disk motion relative to halo stars located at Galactocentric distances r > 40 kpc, shown in Aitoff projection.
Fig. 2: Measured velocity of the MW disk with respect to halo stars located at Galactocentric distances r > 40 kpc (red and blue curves), the combined sample (silver curve) and satellites (orange curve).

Data availability

All data used in this study is publicly available. This work made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). The data that support the plots within this paper and other findings of this study are available from https://github.com/michael-petersen/ReflexMotion or from the corresponding author upon reasonable request.

References

  1. Besla, G. et al. Simulations of the Magellanic stream in a first infall scenario. Astrophys. J. Lett. 721, L97–L101 (2010).

    ADS  Google Scholar 

  2. Boylan-Kolchin, M., Besla, G. & Hernquist, L. Dynamics of the Magellanic Clouds in a Lambda cold dark matter Universe. Mon. Not. R. Astron. Soc. 414, 1560–1572 (2011).

    ADS  Google Scholar 

  3. Peñarrubia, J., Gómez, F. A., Besla, G., Erkal, D. & Ma, Y.-Z. A timing constraint on the (total) mass of the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 456, L54–L58 (2016).

    ADS  Google Scholar 

  4. Shao, S., Cautun, M., Deason, A. J., Frenk, C. S. & Theuns, T. Evolution of LMC/M33-mass dwarf galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 479, 284–296 (2018).

    ADS  Google Scholar 

  5. Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. Mon. Not. R. Astron. Soc. 487, 2685–2700 (2019).

    ADS  Google Scholar 

  6. Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J. & Alcock, C. Third-epoch Magellanic Cloud Proper Motions. I. Hubble Space Telescope/WFC3 data and orbit implications. Astrophys. J. 764, 161 (2013).

    ADS  Google Scholar 

  7. Gómez, F. A. et al. And yet it moves: the dangers of artificially fixing the Milky Way center of mass in the presence of a massive Large Magellanic Cloud. Astrophys. J. 802, 128 (2015).

    ADS  Google Scholar 

  8. Garavito-Camargo, N. et al. Hunting for the dark matter wake Induced by the Large Magellanic Cloud. Astrophys. J. 884, 51 (2019).

    ADS  Google Scholar 

  9. Petersen, M. S. & Peñarrubia, J. Reflex motion in the Milky Way stellar halo resulting from the Large Magellanic Cloud infall. Mon. Not. R. Astron. Soc. 494, L11–L16 (2020).

    ADS  Google Scholar 

  10. Xue, X.-X. et al. Quantifying kinematic substructure in the Milky Way’s Stellar Halo. Astrophys. J. 738, 79 (2011).

    ADS  Google Scholar 

  11. Xue, X.-X. et al. The Radial Profile and Flattening of the Milky Way’s Stellar Halo to 80 kpc from the SEGUE K-giant Survey. Astrophys. J. 809, 144 (2015).

    ADS  Google Scholar 

  12. Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  13. McConnachie, A. W. & Venn, K. A. Revised and new proper motions for confirmed and candidate Milky Way dwarf galaxies. Astron. J. 160, 124 (2020).

    ADS  Google Scholar 

  14. Sesar, B. et al. Machine-learned identification of RR Lyrae stars from sparse, multi-band data: the PS1 sample. Astron. J. 153, 204 (2017).

    ADS  Google Scholar 

  15. Holl, B. et al. Gaia Data Release 2. Summary of the variability processing and analysis results. Astron. Astrophys. 618, A30 (2018).

    Google Scholar 

  16. Rimoldini, L. et al. Gaia Data Release 2. All-sky classification of high-amplitude pulsating stars. Astron. Astrophys. 625, A97 (2019).

    Google Scholar 

  17. van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud proper motions. II. The Large Magellanic Cloud rotation field in three dimensions. Astrophys. J. 781, 121 (2014).

    ADS  Google Scholar 

  18. Erkal, D., Belokurov, V. & Parkin, D. L. Equilibrium models of the Milky Way mass are biased high by the LMC. Mon. Not. R. Astron. Soc. 498, 5574–5580 (2020).

    ADS  Google Scholar 

  19. Deason, A. J. et al. The slight spin of the old stellar halo. Mon. Not. R. Astron. Soc. 470, 1259–1273 (2017).

    ADS  Google Scholar 

  20. Bird, S. A. et al. Constraints on the assembly history of the Milky Way’s smooth, diffuse stellar halo from the metallicity-dependent, radially-dominated velocity anisotropy profiles probed with K giants and BHB stars using LAMOST, SDSS/SEGUE, and Gaia. Preprint at https://arxiv.org/abs/2005.05980 (2020).

  21. Johnston, K. V., Law, D. R. & Majewski, S. R. A Two Micron All Sky Survey view of the Sagittarius dwarf galaxy. III. Constraints on the flattening of the galactic halo. Astrophys. J. 619, 800–806 (2005).

    ADS  Google Scholar 

  22. Law, D. R. & Majewski, S. R. The Sagittarius dwarf galaxy: a model for evolution in a triaxial Milky Way halo. Astrophys. J. 714, 229–254 (2010).

    ADS  Google Scholar 

  23. Bovy, J., Bahmanyar, A., Fritz, T. K. & Kallivayalil, N. The shape of the inner Milky Way halo from observations of the Pal 5 and GD-1 stellar streams. Astrophys. J. 833, 31 (2016).

    ADS  Google Scholar 

  24. Fardal, M. A. et al. Connecting the Milky Way potential profile to the orbital time-scales and spatial structure of the Sagittarius stream. Mon. Not. R. Astron. Soc. 483, 4724–4741 (2019).

    ADS  Google Scholar 

  25. Malhan, K. & Ibata, R. A. Constraining the Milky Way halo potential with the GD-1 stellar stream. Mon. Not. R. Astron. Soc. 486, 2995–3005 (2019).

    ADS  Google Scholar 

  26. Deng, L.-C. et al. LAMOST Experiment for Galactic Understanding and Exploration (LEGUE)—The survey’s science plan. Res. Astron. Astrophys. 12, 735–754 (2012).

    ADS  Google Scholar 

  27. de Jong, R. S. et al. 4MOST: Project overview and information for the first call for proposals. Messenger 175, 3–11 (2019).

    ADS  Google Scholar 

  28. Cirasuolo, M. et al. MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT. Proc. SPIE 9147, 91470N (2014).

    Google Scholar 

  29. Hobson, M. P., Bridle, S. L. & Lahav, O. Combining cosmological data sets: hyperparameters and Bayesian evidence. Mon. Not. R. Astron. Soc. 335, 377–388 (2002).

    ADS  Google Scholar 

  30. Gravity Collaboration. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019).

  31. Bennett, M. & Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. Mon. Not. R. Astron. Soc. 482, 1417–1425 (2019).

    ADS  Google Scholar 

  32. Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    ADS  Google Scholar 

  33. McMillan, P. J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 465, 76–94 (2017).

    ADS  Google Scholar 

  34. Drimmel, R. & Poggio, E. On the solar velocity. Res. Not. Am. Astron. Soc. 2, 210 (2018).

    ADS  Google Scholar 

  35. Ma, Y.-Z., Hinshaw, G. & Scott, D. WMAP observations of Planck ESZ clusters. Astrophys. J. 771, 137 (2013).

    ADS  Google Scholar 

  36. Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395 (2004).

    ADS  MathSciNet  Google Scholar 

  37. Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008).

    ADS  Google Scholar 

  38. Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS  Google Scholar 

  39. Xue, X. X. et al. The Milky Way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of ~2400 SDSS blue horizontal-branch stars. Astrophys. J. 684, 1143–1158 (2008).

    ADS  Google Scholar 

  40. Xue, X.-X. et al. The SEGUE K giant survey. II. A catalog of distance determinations for the SEGUE K giants in the galactic halo. Astrophys. J. 784, 170 (2014).

    ADS  Google Scholar 

  41. Yanny, B. et al. SEGUE: a spectroscopic survey of 240,000 stars with g = 14–20. Astron. J. 137, 4377–4399 (2009).

    ADS  Google Scholar 

  42. Lancaster, L., Koposov, S. E., Belokurov, V., Evans, N. W. & Deason, A. J. The halo’s ancient metal-rich progenitor revealed with BHB stars. Mon. Not. R. Astron. Soc. 486, 378–389 (2019).

    ADS  Google Scholar 

  43. Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  44. Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).

    Google Scholar 

  45. Niederste-Ostholt, M., Belokurov, V., Evans, N. W. & Peñarrubia, J. Re-assembling the Sagittarius dwarf galaxy. Astrophys. J. 712, 516–526 (2010).

    ADS  Google Scholar 

  46. Majewski, S. R., Skrutskie, M. F., Weinberg, M. D. & Ostheimer, J. C. A Two Micron All Sky Survey view of the Sagittarius dwarf galaxy. I. Morphology of the Sagittarius core and tidal arms. Astrophys. J. 599, 1082–1115 (2003).

    ADS  Google Scholar 

  47. Fritz, T. K. et al. Gaia DR2 proper motions of dwarf galaxies within 420 kpc. Orbits, Milky Way mass, tidal influences, planar alignments, and group infall. Astron. Astrophys. 619, A103 (2018).

    Google Scholar 

  48. Riley, A. H. et al. The velocity anisotropy of the Milky Way satellite system. Mon. Not. R. Astron. Soc. 486, 2679–2694 (2019).

    ADS  Google Scholar 

  49. Pace, A. B. & Li, T. S. Proper motions of Milky Way ultra-faint satellites with Gaia DR2 x DES DR1. Astrophys. J. 875, 77 (2019).

    ADS  Google Scholar 

  50. Fritz, T. K., Carrera, R., Battaglia, G. & Taibi, S. Gaia DR 2 and VLT/FLAMES search for new satellites of the LMC. Astron. Astrophys. 623, A129 (2019).

    ADS  Google Scholar 

  51. Torrealba, G. et al. The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2. Mon. Not. R. Astron. Soc. 488, 2743–2766 (2019).

    ADS  Google Scholar 

  52. Simon, J. D. et al. Birds of a feather? Magellan/IMACS spectroscopy of the ultra-faint satellites Grus II, Tucana IV, and Tucana V. Astrophys. J. 892, 137 (2020).

    ADS  Google Scholar 

  53. Kallivayalil, N. et al. The missing satellites of the Magellanic clouds? Gaia proper motions of the recently discovered ultra-faint galaxies. Astrophys. J. 867, 19 (2018).

    ADS  Google Scholar 

  54. Patel, E. et al. The orbital histories of Magellanic satellites using Gaia DR2 proper motions. Astrophys. J. 893, 121 (2020).

    ADS  Google Scholar 

  55. Cohen, J. G. et al. The outer halo of the Milky Way as probed by RR Lyr variables from the Palomar Transient Facility. Astrophys. J. 849, 150 (2017).

    ADS  Google Scholar 

  56. Iorio, G. & Belokurov, V. The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon. Not. R. Astron. Soc. 482, 3868–3879 (2019).

    ADS  Google Scholar 

  57. Vasiliev, E. Proper motions and dynamics of the Milky Way globular cluster system from Gaia DR2. Mon. Not. R. Astron. Soc. 484, 2832–2850 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

M.S.P. acknowledges funding from the UK Science and Technology Facilities Council (STFC) Consolidated Grant and support from M. Weinberg for use of the exp code. Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

Author information

Authors and Affiliations

Authors

Contributions

Both authors assisted in the interpretation of the results and writing of the paper.

Corresponding author

Correspondence to Michael S. Petersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Tracer population properties as a function of distance.

a, Logarithm of number of sources larger than some Galactocentric radius, r, as a function of Galactocentric radius r in kiloparsecs. We show the three datasets analysed in this paper in colour (red: K Giants, blue: Blue Horizontal Branch, orange: satellites). We show two explored, but unused, datasets in grey (solid grey: globular clusters, dashed gray: RR Lyrae stars). b, The mean proper motion error in milliarcseconds per year for the stellar sources (K Giants, Blue Horizontal Branch, RR Lyrae), as a function of Galactocentric radius. As the brightest sample, K Giants have the smallest uncertainty. We mark 100, 200, and 300 km s−1, the approximate range of halo velocities, as a dotted black curves.

Extended Data Fig. 2 Angular momentum components of halo stars at Galactocentric distances r > 20 kpc.

Blue and red dots denote BHB and K giant stars, respectively. The angular momentum of the Sagittarius dwarf is marked with a black dot at \({{\bf{L}}}_{{\rm{sgr}}} \,\,(\ {\rm{in}}\, {\rm{units}}\, {\rm{of}}\, {\rm{kpc}}\ {\rm{km}}\ {{\rm{s}}}^{-1})=(605,-4,515,-1,267)\). For reference, circles mark angular momentum difference \(| {\bf{L}}-{{\bf{L}}}_{{\rm{sgr}}}| =3,000\ \ {\rm{kpc}}\ {\rm{km}}\ {{\rm{s}}}^{-1}\). Panels ac and panels df correspond to stars at Bsgr < 20 and Bsgr > 20 off the orbtital plane of the Sagittarius stream, respectively. We show the mean 1σ error bar at r > 40 kpc in the lower left of the centre column.

Extended Data Fig. 3 Corner plot of covariance in the nine fitting parameters for the Blue Horizontal Branch (blue), K Giant (red), satellite (orange) and combined K Giant+Blue Horizontal Branch samples (silver).

The fit parameters are disk velocity, vtravel; Galactocentric longitude apex apex; Galactocentric latitude apex bapex; the mean velocity of halo stars in spherical coordinates 〈vr〉, 〈vϕ〉 and 〈vθ〉; the three hyperparameters σh,los, σh, and σh,b. A full description of the model may be found in the Supplementary Information.

Extended Data Fig. 4 Corner plot for mock datasets of K Giant stars at r > 40 kpc drawn from live n-body simulations of the MW where the LMC falls in with a mass MLMC/(1011M) = 1, 2 and 3.

Posteriors from the fits for the three models are shown in greyscale from dark to light to indicate increasing mass: 1 × 1011M (black), 2 × 1011M (dark grey), 3 × 1011M (light grey). See Supplementary Information for mock data details. All parameters are well constrained and show a relatively minor covariance. Note that the bounds on the apex direction and the magnitude of the reflex motion improve in proportion to the LMC mass. Values derived directly from the simulation are shown as dashed vertical lines (on histograms), or coloured ‘x’ markers on contour plots: light red (1 × 1011M), red (2 × 1011M), dark red (3 × 1011M).

Extended Data Fig. 5 Apex direction measured from mock samples of K Giant stars located at r > 40 kpc in the SDSS footprint.

We use live Galaxy models that experience the infall of LMC-like galaxies with masses MLMC/1011M = 1, 2 and 3 (panels a, b and c respectively). Solid lines denote the infall trajectory of the LMC derived from backwards orbit integration of HST proper motions, while dashed lines show models where the LMC trajectory has been flipped. Red (blue) symbols denote the measurement for mock samples with an LMC-like (flipped) trajectory. Uncertainties are the standard deviation derived from the posteriors of the fit locations. Open circles show the point on the trajectory where the LMC crossed the virial radius of the Galaxy. Note that within statistical uncertainties the apex direction derived from the kinematics of distant stellar halo particles points towards the direction where the MW disk is currently moving (crossed circles). The disk component is currently travelling to an earlier point on the LMC trajectory.

Extended Data Fig. 6 Velocity of the Galactic disk (vtravel) inferred from the kinematics of stellar tracers located at r > 40 kpc as a function of LMC mass.

The solid (dashed) lines show the true speed of the disk barycentre relative to dark matter particles within a radial range 40 < r < 150 on the infall (flipped) trajectories in the mock LMC models, where radius r is in kiloparsecs. The blue (red) symbols show the value of vtravel measured from the mock models in the infall (flipped) trajectory case.

Extended Data Fig. 7 Dynamical time of particles in the model MW-LMC systems as a function of Galactocentric radius.

For ease of reference, horizontal dashed lines show the lookback time for the onset of disk motion. Halo particles with a dynamical time above the horizontal lines react impulsively to the LMC infall. At a fixed radius, radial and circular orbits provide the shortest and longest periods, respectively. As a function of radius, a star’s period will fall in the grey-shaded region.

Extended Data Fig. 8 Comparison of the appearance of reflex motion versus rotation.

ac, Our reflex motion model, projected onto the (, b) plane in vlos, v, vb. Velocities in each panel have been normalized to units of vtravel. df, A rotation model, with magnitude vϕ, projected onto the (, b) plane in vlos, v, vb where velocities in each panel have been normalized to units of vrotation. The smoothed SEGUE footprint is outlined in black. Comparing the upper and lower rows shows that the line-of-sight and b velocities are similar, supporting the need for 6-dimensional data and all-sky coverage.

Supplementary information

Supplementary Information

Supplementary Discussion, including Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petersen, M.S., Peñarrubia, J. Detection of the Milky Way reflex motion due to the Large Magellanic Cloud infall. Nat Astron 5, 251–255 (2021). https://doi.org/10.1038/s41550-020-01254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-01254-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing