Abstract
Multi-messenger astronomy, the coordinated observation of different classes of signals that originate from the same astrophysical event, provides a wealth of information about astrophysical processes1. So far, multi-messenger astronomy has correlated signals from known fundamental forces and standard model particles like electromagnetic radiation, neutrinos and gravitational waves. Many of the open questions of modern physics suggest the existence of exotic fields with light quanta (with masses ≪1 eV c−2). Quantum sensor networks could be used to search for astrophysical signals that are predicted by theories beyond the standard model2 that address these questions. Here, we show that networks of precision quantum sensors that, by design, are shielded from or are insensitive to conventional standard model physics signals can be a powerful tool for multi-messenger astronomy. We consider the case in which high-energy astrophysical events produce intense bursts of exotic low-mass fields (ELFs), and we propose a novel model for the potential detection of an ELF signal on the basis of general assumptions. We estimate ELF signal amplitudes, delays, rates and distances of gravitational-wave sources to which global networks of atomic magnetometers3,4,5 and atomic clocks6,7,8 could be sensitive. We find that such precision quantum sensor networks can function as ELF telescopes to detect signals from sources that generate ELF bursts of sufficient intensity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Response of atomic spin-based sensors to magnetic and nonmagnetic perturbations
Scientific Reports Open Access 10 January 2022
-
Search for topological defect dark matter with a global network of optical magnetometers
Nature Physics Open Access 07 December 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Budker, D. & Jackson Kimball, D. F. (eds) Optical Magnetometry (Cambridge Univ. Press, 2013).
Pospelov, M. et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).
Afach, S. et al. Characterization of the global network of optical magnetometers to search for exotic physics (GNOME). Phys. Dark Universe 22, 162180 (2018).
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).
Roberts, B. M. et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8, 1195 (2017).
Baumann, D., Chia, H. S. & Porto, R. A. Probing ultralight bosons with binary black holes. Phys. Rev. D 99, 044001 (2019).
Raffelt, G. G. Particle physics from stars. Annu. Rev. Nucl. Part. Sci. 49, 163–216 (1999).
Tkachev, I. I. Fast radio bursts and axion miniclusters. JETP Lett. 101, 1–6 (2015).
Loeb, A. Lets talk about black hole singularities. Preprint at https://arxiv.org/abs/1805.05865 (2018).
Arvanitaki, A., Baryakhtar, M., Dimopoulos, S., Dubovsky, S. & Lasenby, R. Black hole mergers and the QCD axion at Advanced LIGO. Phys. Rev. D 95, 043001 (2017).
Baryakhtar, M., Lasenby, R. & Teo, M. Black hole superradiance signatures of ultralight vectors. Phys. Rev. D 96, 035019 (2017).
Fujii, Y. & Maeda, K. The Scalar–Tensor Theory of Gravitation (Cambridge Univ. Press, 2007).
Franciolini, G., Hui, L., Penco, R., Santoni, L. & Trincherini, E. Effective field theory of black hole quasinormal modes in scalar–tensor theories. J. High Energy Phys. 2019, 127 (2019).
Barausse, E., Palenzuela, C., Ponce, M. & Lehner, L. Neutron-star mergers in scalar–tensor theories of gravity. Phys. Rev. D 87, 081506 (2013).
Krause, D. E., Kloor, H. T. & Fischbach, E. Multipole radiation from massive fields: application to binary pulsar systems. Phys. Rev. D 49, 6892–6906 (1994).
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Abbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Jackson Kimball, D. F. et al. Searching for axion stars and Q-balls with a terrestrial magnetometer network. Phys. Rev. D 97, 043002 (2018).
Geraci, A. A., Bradley, C., Gao, D., Weinstein, J. & Derevianko, A. Searching for ultralight dark matter with optical cavities. Phys. Rev. Lett. 123, 31304 (2019).
Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009).
Geraci, A. A. & Derevianko, A. Sensitivity of atom interferometry to ultralight scalar field dark matter. Phys. Rev. Lett. 117, 261301 (2016).
Olive, K. A. & Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 043524 (2008).
Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys. 22, 093010 (2020).
Paul, D. Binary neutron star merger rate via the luminosity function of short gamma-ray bursts. Mon. Not. R. Astron. Soc. 477, 4275–4284 (2018).
Tino, G. M. et al. SAGE: a proposal for a space atomic gravity explorer. Eur. Phys. J. D 73, 228 (2019).
Peskin, M. E. & Schroeder, D. V. An Introduction to Quantum Field Theory (Perseus Books, 1995).
Abbott, B. P. et al. GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017).
Jackson, J. D. Classical Electrodynamics 3rd edn (John Wiley, 1999).
Anderson, W. G. et al. Excess power statistic for detection of burst sources of gravitational radiation. Phys. Rev. D 63, 042003 (2001).
Maggiore, M. Gravitational Waves. Volume 1: Theory and Experiments (Oxford Univ. Press, 2008).
Roberts, B. M. et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8, 1195 (2017).
Derevianko, A. Detecting dark-matter waves with a network of precision-measurement tools. Phys. Rev. A 97, 042506 (2018).
Romano, J. D. & Cornish, N. J. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev. Relativ. 20, 2 (2017).
Groth, E. J. Probability distributions related to power spectra. Astrophys. J. Suppl. Ser. 29, 285–302 (1975).
Panelli, G., Roberts, B. M. & Derevianko, A. Applying matched-filter technique to the search for dark matter transients with networks of quantum sensors. EPJ Quantum Technol. 7, 5 (2020).
Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).
Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).
Derevianko, A., Dzuba, V. A. & Flambaum, V. V. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. Phys. Rev. Lett. 109, 180801 (2012).
Dzuba, V. A. & Flambaum, V. V. Highly charged ions for atomic clocks and search for variation of the fine structure constant. Hyperfine Interact. 236, 7986 (2015).
Savalle, E. et al. Novel approaches to dark-matter detection using space-time separated clocks. Preprint at https://arxiv.org/abs/1902.07192 (2019).
Arvanitaki, A., Dimopoulos, S. & Van Tilburg, K. Sound of dark matter: searching for light scalars with resonant-mass detectors. Phys. Rev. Lett. 116, 031102 (2016).
Sibiryakov, S., Sørensen, P. & Yu, T. -T. BBN constraints on universally-coupled ultralight scalar dark matter. Preprint at https://arxiv.org/abs/2006.04820 (2020).
Jackson Kimball, D. F. Nuclear spin content and constraints on exotic spin-dependent couplings. New J. Phys. 17, 073008 (2015).
Chang, J. H., Essig, R. & McDermott, S. D. Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. J. High Energy Phys. 2018, 51 (2018).
Acknowledgements
We thank L. Bernard, G. Blewitt, S. Bonazzola, D. Budker, A. Furniss, S. Gardner, E. Gourgoulhon, K. Grimm, J. E. Lawler, R. Plotkin, M. Pospelov, J. Pradler, B. Safdi, A. P. Sen, J. E. Stalnaker and C. Will for discussions. This work was supported in part by the European Research Council under the European Unions Horizon 2020 research and innovation programme (grant no. 695405), the DFG Reinhart Koselleck project, the Polish National Science Centre (grant no. 2015/19/B/ST2/02129), the Simons and Heising-Simons Foundations, and by the US National Science Foundation (grant nos. PHY-1707875, PHY-1806672 and PHY-1912465).
Author information
Authors and Affiliations
Contributions
A.D., C.D. and D.F.J.K. conceived the project. All authors contributed to the development of the methodology. A.D., C.D., D.F.J.K. and I.A.S. wrote the original draft of the paper. All authors reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Guglielmo Tino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary discussion, Supplementary Figs. 1 and 2, Supplementary Tables 1 and 2.
Rights and permissions
About this article
Cite this article
Dailey, C., Bradley, C., Jackson Kimball, D.F. et al. Quantum sensor networks as exotic field telescopes for multi-messenger astronomy. Nat Astron 5, 150–158 (2021). https://doi.org/10.1038/s41550-020-01242-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-01242-7
This article is cited by
-
Response of atomic spin-based sensors to magnetic and nonmagnetic perturbations
Scientific Reports (2022)
-
Direct detection of ultralight dark matter bound to the Sun with space quantum sensors
Nature Astronomy (2022)
-
Search for axion-like dark matter with spin-based amplifiers
Nature Physics (2021)
-
Search for topological defect dark matter with a global network of optical magnetometers
Nature Physics (2021)