Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The potential of small satellites for scientific and astronomical discovery

Abstract

The development of small satellites for telecommunication constellations in low-Earth orbit provides a unique opportunity to the astronomical community. Mass-produced, commercial satellite platforms can host dedicated scientific payloads and expand access to space-based astronomy. Technologies critical to the development of small orbital instruments have been demonstrated by exploratory missions. By employing these capabilities and techniques in mass-produced spacecraft, terrestrial limitations such as geography, atmosphere and planetary motion can be overcome at a fraction of the cost of traditional space-based astronomy missions. Instruments could be deployed across swarms, or even constellations, of small, cheap and reliably produced spacecraft. With the continuing democratization of space, it is now timely and opportune to consider the approaches necessary to maximize the scientific potential of innovations driven by the commercial sector.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Parham, J. B. et al. Leveraging commercial cubesat constellations for auroral science: a case study. J. Geophys. Res. Space Phys. 124, 3487–3500 (2019).

    ADS  Article  Google Scholar 

  2. 2.

    Millan, R. M. et al. Small satellites for space science: a COSPAR scientific roadmap. Adv. Space Res. 64, 1466–1517 (2019).

    ADS  Article  Google Scholar 

  3. 3.

    Leverington, D. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope (Cambridge Univ. Press, 2000).

  4. 4.

    Rajan, R. T. et al. Space-based aperture array for ultra-long wavelength radio astronomy. Exp. Astron. 41, 271–306 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Smith, H. J. in Low Frequency Astrophysics from Space (eds Kassim, N. E. & Weiler, K. W.) 29–33 (Springer, 1990).

  6. 6.

    Bentum, M., Verhoeven, C. & Boonstra, A.-J. In Proc. 20th Annual Workshop on Circuits, Systems and Signal Processing, ProRISC 2009 26–27 (Technology Foundation, 2009).

  7. 7.

    Klein-Wolt, M. et al. A White Paper for a Low-frequency Radio Interferometer Mission to Explore the Cosmological Dark Ages for the L2, L3 ESA Cosmic Vision Program (2013); https://go.nature.com/3ckayoh

  8. 8.

    Saks, N. et al. In Small Satellite Systems and Services – The 4S Symposium 1–15 (ESA, CNES, 2010).

  9. 9.

    Fish, V. L., Shea, M. & Akiyama, K. Imaging black holes and jets with a VLBI array including multiple space-based telescopes. Adv. Space Res. 65, 821–830 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Kramer, H. J. & Cracknell, A. P. An overview of small satellites in remote sensing. Int. J. Remote Sens. 29, 4285–4337 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    Ballhaus, W. F. Jr et al. James Webb Space Telescope (JWST) Independent Comprehensive Review Panel (ICRP): Final Report (NASA, 2010); https://go.nature.com/2HkZ2hh

  12. 12.

    Spitzer, L. Jr Report to project rand: astronomical advantages of an extra-terrestrial observatory. Astron. Q. 7, 131–142 (1990).

    Article  Google Scholar 

  13. 13.

    Billings, L. The telescope that ate astronomy. Nature 467, 1028–1030 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Witze, A. Delays mount for NASA’s $8-billion Hubble successor. Nature 559, 16–18 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Weiler, K. W. in Low Frequency Astrophysics from Space (eds Kassim, N. E. & Weiler, K. W.) 8–18 (Springer, 1990).

  16. 16.

    Di Mauro, G., Lawn, M. & Bevilacqua, R. Survey on guidance navigation and control requirements for spacecraft formation-flying missions. J. Guid. Control. Dyn. 41, 581–602 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Sweeting, M. Modern small satellites – changing the economics of space. Proc. IEEE 106, 343–361 (2018).

    Article  Google Scholar 

  18. 18.

    Bandyopadhyay, S. et al. In Proc. 53rd AIAA Aerospace Sciences Meeting https://doi.org/10.2514/6.2015-1623 (AIAA, 2015).

  19. 19.

    Baade, D. In 3rd BRITE Science Conference (eds Wade, G. A. et al.) 15–20 (PTA, 2018).

  20. 20.

    Bentum, M. J., Verhoeven, C. J. M., Boonstra, A. J., van Der Veen, A. J. & Gill, E. K. A. In Proc. 60th Internation Astronautical Congress 1254–1261 (IAC, 2009).

  21. 21.

    Cahoy, K. CubeSats in Astronomy and Astrophysics (MIT, 2015); https://go.nature.com/3chUlQu

  22. 22.

    Deschamps, N. C. et al. The BRITE space telescope: using a nanosatellite constellation to measure stellar variability in the most luminous stars. Acta Astronaut. 65, 643–650 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Knapp, M. et al. Demonstrating high-precision photometry with a CubeSat: ASTERIA observations of 55 Cancri e. Astron. J. 160, 23 (2020).

    ADS  Article  Google Scholar 

  24. 24.

    Alexander, K. D. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys. J. Lett. 848, L21 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Lipunov, V. M. et al. MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys. J. Lett. 850, L1 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Reiner, M. J., Fainberg, J., Kaiser, M. L. & Stone, R. G. Type III radio source located by Ulysses/Wind triangulation. J. Geophys. Res. Sp. Phys. 103, 1923–1931 (1998).

    ADS  Article  Google Scholar 

  27. 27.

    Obrocka, M., Stappers, B. & Wilkinson, P. Localising fast radio bursts and other transients using interferometric arrays. Astron. Astrophys. 579, 69 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Maley, P. D. & Pizzicaroli, J. C. The visual appearance of the Iridium satellites. Acta Astronaut. 52, 629–639 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Hainaut, O. R. & Williams, A. P. Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains. Astron. Astrophys. 636, A121 (2020).

    ADS  Article  Google Scholar 

  30. 30.

    Gallozzi, S., Scardia, M. & Maris, M. Concerns about ground based astronomical observations: a step to safeguard the astronomical sky. Preprint at https://arxiv.org/abs/2001.10952v2 (2020).

  31. 31.

    Kirchner, S. The Impact of Large-scale Satellite Constellations on Earth-based Astronomy as a Problem of International Law (SSRN, 2020); https://doi.org/10.2139/ssrn.3518056

  32. 32.

    Venkatesan, A., Lowenthal, J., Prem, P. & Vidaurri, M. The impact of satellite constellations on space as an ancestral global commons. Nat. Astron. https://doi.org/10.1038/s41550-020-01238-3 (2020).

  33. 33.

    Djorgovski, S. G. In Proc. Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05) 125–132 (IEEE, 2005).

  34. 34.

    Szalay, A. & Gray, J. The world-wide telescope. Science 293, 2037–2040 (2001).

    ADS  Article  Google Scholar 

  35. 35.

    Faerber, N. et al. In Proc. SpaceOps 2016 Conference https://doi.org/10.2514/6.2016-2595 (AIAA, 2016).

  36. 36.

    Lin, Z., Li, W., Jin, J., Yan, J. & Kuang, L. In Space Information Networks (ed. Yu, Q.) 207–220 (Springer, 2019).

  37. 37.

    Palmintier, B., Kitts, C., Stang, P. & Swartwout, M. In Proc. 16th Annual AIAA/USU Conference on Small Satellites 6–9 (AIAA, 2002).

  38. 38.

    Shao, M. & Colavita, M. M. Long-baseline optical and infrared stellar interferometry. Annu. Rev. Astron. Astrophys. 30, 457–498 (1992).

    ADS  Article  Google Scholar 

  39. 39.

    Monnier, J. D. Optical interferometry in astronomy. Rep. Prog. Phys. 66, 789–857 (2003).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the invaluable assistance, advice and critical feedback provided by R. E. Simmonds in preparing this manuscript.

Author information

Affiliations

Authors

Contributions

P.A. carried out the research, writing and editing of the manuscript. J.W.E. compiled the open issues draft analysis. Project planning and commercial information was sourced by M.T.

Corresponding author

Correspondence to Philip Allen.

Ethics declarations

Competing interests

The authors declare the following competing interests: P.A., J.W.E. and M.T. are paid employees of Airbus Defence and Space Ltd, part of the Airbus Group which owns shares in the joint venture OneWeb Satellites, the manufacturer of the ArrOW platform.

Additional information

Peer review information Nature Astronomy thanks Nigel Bannister and Bruce Yost for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allen, P., Wickham-Eade, J. & Trichas, M. The potential of small satellites for scientific and astronomical discovery. Nat Astron 4, 1039–1042 (2020). https://doi.org/10.1038/s41550-020-01227-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing