Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong toroidal magnetic fields required by quiescent X-ray emission of magnetars

Abstract

Magnetars are neutron stars (NSs) with extreme magnetic fields1 of strength 5 × 1013−1015 G. These fields are generated by dynamo action during the proto-NS phase, and are expected to have both poloidal and toroidal components2,3,4,5,6, although the energy of the toroidal component could be ten times larger7. Only the poloidal dipolar field can be measured directly, via NS spin-down8. The magnetic field provides heating and governs how this heat flows through the crust9. Magnetar thermal X-ray emission in quiescence is modulated with the rotational period of the NS, with a typical pulsed fraction 10–58%, implying that the surface temperature is substantially non-uniform despite the high thermal conductivity of the star’s crust. Poloidal dipolar fields cannot explain this large pulsed fraction10,11. Previous two-dimensional simulations12,13 have shown that a strong, large-scale toroidal magnetic field pushes a hot region into one hemisphere and increases the pulsed fraction. Here, we report three-dimensional magneto-thermal simulations of magnetars with strong, large-scale toroidal magnetic fields. These models, combined with ray propagation in curved spacetime, accurately describe the observed light curves of 10 out of 19 magnetars in quiescence and allow us to further constrain their rotational orientation. We find that the presence of a strong toroidal magnetic field is enough to explain the strong modulation of thermal X-ray emission in quiescence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Surface temperature, Ts, maps obtained in 3D magneto-thermal simulations.
Fig. 2: Folded soft X-ray light curve (300–2,000 eV) for magnetars.

Data availability

The data that support the plots within the paper and other findings are provided as Source data.

Code availability

The codes that were used to prepare our models within the paper are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Ferrario, L., Melatos, A. & Zrake, J. Magnetic field generation in stars. Space Sci. Rev. 191, 77–109 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Braithwaite, J. & Spruit, H. C. A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431, 819–821 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Thompson, C., Lyutikov, M. & Kulkarni, S. R. Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574, 332–355 (2002).

    ADS  Article  Google Scholar 

  5. 5.

    Lyutikov, M. & Gavriil, F. P. Resonant cyclotron scattering and Comptonization in neutron star magnetospheres. Mon. Not. R. Astron. Soc. 368, 690–706 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Rea, N., Zane, S., Turolla, R., Lyutikov, M. & Götz, D. Resonant cyclotron scattering in magnetars’ emission. Astrophys. J. 686, 1245–1260 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Braithwaite, J. & Nordlund, Å. Stable magnetic fields in stellar interiors. Astron. Astrophys. 450, 1077–1095 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Gunn, J. E. & Ostriker, J. P. Magnetic dipole radiation from pulsars. Nature 221, 454–456 (1969).

    ADS  Article  Google Scholar 

  9. 9.

    Pons, J. A. & Viganò, D. Magnetic, thermal and rotational evolution of isolated neutron stars. Living Rev. Comput. Astrophys. 5, 3 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Özel, F., Psaltis, D. & Kaspi, V. M. Constraints on thermal emission models of anomalous X-ray pulsars. Astrophys. J. 563, 255–266 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    Hu, C.-P., Ng, C. Y. & Ho, W. C. G. A systematic study of soft X-ray pulse profiles of magnetars in quiescence. Mon. Not. R. Astron. Soc. 485, 4274–4286 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    Perna, R., Viganò, D., Pons, J. A. & Rea, N. The imprint of the crustal magnetic field on the thermal spectra and pulse profiles of isolated neutron stars. Mon. Not. R. Astron. Soc. 434, 2362–2372 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Viganò, D. et al. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 434, 123–141 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Wood, T. S. & Hollerbach, R. Three-dimensional simulation of the magnetic stress in a neutron star crust. Phys. Rev. Lett. 114, 191101 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Gourgouliatos, K. N. & Hollerbach, R. Magnetic axis drift and magnetic spot formation in neutron stars with toroidal fields. Astrophys. J. 852, 21 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Gourgouliatos, K. N. & Pons, J. A. Nonaxisymmetric Hall instability: a key to understanding magnetars. Phys. Rev. Res. 1, 032049 (2019).

    Article  Google Scholar 

  17. 17.

    van Adelsberg, M. & Lai, D. Atmosphere models of magnetized neutron stars: QED effects, radiation spectra and polarization signals. Mon. Not. R. Astron. Soc. 373, 1495–1522 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    Camilo, F., Reynolds, J., Johnston, S., Halpern, J. P. & Ransom, S. M. The magnetar 1E 1547.0-5408: radio spectrum, polarimetry, and timing. Astrophys. J. 679, 681–686 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Passamonti, A., Akgün, T., Pons, J. A. & Miralles, J. A. On the magnetic field evolution time-scale in superconducting neutron star cores. Mon. Not. R. Astron. Soc. 469, 4979–4984 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Gusakov, M. E., Kantor, E. M. & Ofengeim, D. D. Evolution of the magnetic field in neutron stars. Phys. Rev. D 96, 103012 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    ADS  Article  Google Scholar 

  22. 22.

    Bilous, A. V. et al. A NICER view of PSR J0030+0451: evidence for a global-scale multipolar magnetic field. Astrophys. J. Lett. 887, L23 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Gourgouliatos, K. N., Wood, T. S. & Hollerbach, R. Magnetic field evolution in magnetar crusts through three-dimensional simulations. Proc. Natl Acad. Sci. USA 113, 3944–3949 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Dormy, E., Cardin, P. & Jault, D. MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 15–30 (1998).

    ADS  Article  Google Scholar 

  25. 25.

    Aubert, J., Aurnou, J. & Wicht, J. The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945–956 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Gudmundsson, E. H., Pethick, C. J. & Epstein, R. I. Structure of neutron star envelopes. Astrophys. J. 272, 286–300 (1983).

    ADS  Article  Google Scholar 

  27. 27.

    Beloborodov, A. M. Gravitational bending of light near compact objects. Astrophys. J. Lett. 566, L85–L88 (2002).

    ADS  Article  Google Scholar 

  28. 28.

    Fruscione, A. et al. CIAO: Chandra’s data analysis system. Proc. SPIE 6270, 62701V (2006).

    Article  Google Scholar 

  29. 29.

    Olausen, S. A. & Kaspi, V. M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    ADS  Article  Google Scholar 

  31. 31.

    Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank F. Verbunt for valuable comments that helped to improve our work notably. This work was supported by STFC grant no. ST/S000275/1. The numerical simulations were carried out on the STFC-funded DiRAC I UKMHD Science Consortia machine, hosted as part of and enabled through the ARC3 HPC resources and support team at the University of Leeds.

Author information

Affiliations

Authors

Contributions

All authors contributed to the simulation design, interpretation and writing the manuscript. A.P.I. carried out the X-ray data reduction, the MHD simulations and the model fitting. T.W. adapted the PARODY code to solve magneto-thermal equations.

Corresponding authors

Correspondence to Andrei P. Igoshev or Rainer Hollerbach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Astronomy thanks Daniele Viganó and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Surface temperature, Ts, maps obtained for models with no initial toroidal magnetic field.

a, model C for NS with initial dipolar poloidal magnetic field B0 = 7 × 1013 G at age 10 kyr. b, model D for NS with initial poloidal dipolar magnetic field B0 = 5 × 1014 G age 10 kyr. The surface temperatures are in units of MK.

Source data

Extended Data Fig. 2 Results for model E with equal initial energy in toroidal and poloidal magnetic fields.

Panel A: surface temperature, Ts, maps obtained in 3D magneto-thermal simulations. We show NS with initial dipolar poloidal magnetic field B0 = 1 × 1014 G at age 10 kyr. Panels B, C, D: the soft X-ray light-curves expected for this thermal map at 10 kyr. Panel B shows k = 30 panel C shows k = 60 and panel D shows k = 90. Dotted black lines correspond to i = 30, solid blue lines correspond to i = 60 and red dashed lines correspond to i = 90.

Source data

Extended Data Fig. 3 The soft X-ray light-curves expected for models with no initial toroidal magnetic field.

Panels A, B, C are for model C, panels D,E,F are for model D. Panels A and D show k = 30, panels B and E show k = 60 and panels C and F show k = 90. Dotted black lines correspond to i = 30, solid blue lines correspond to i = 60 and red dashed lines correspond to i = 90.

Source data

Extended Data Fig. 4 Data sets analysed.

The instrument modes are as following: CC is the Continuous Clocking mode (2.85 msec time resolution), TE is the timed exposure (3.2 sec time resolution), PN has time resolution 73.4 msec in full frame mode and MOS has time resolution of 2.6 sec in full frame mode.

Extended Data Fig. 5 Folded soft X-ray light-curve (300-2000 eV) for magnetars.

A panel: PSR J1119-6127, B panel CXOU J164710.0-455216. Dashed blue lines show observations, and the theoretical light-curve for the most favourable orientation is shown with black solid lines. Red error bars are 1σ confidence intervals.

Source data

Extended Data Fig. 6 Folded soft X-ray light-curve (300-2000 eV) for magnetars.

A panel: XTE J1810-197, B panel Swift J1822.3-1606. Dashed blue lines show observations, and the theoretical light-curve for the most favourable orientation is shown with black solid lines. Red error bars are 1σ confidence intervals.

Source data

Extended Data Fig. 7 Folded soft X-ray light-curve (300-2000 eV) for magnetars.

A panel: CXOU J171405.7-381031, B panel SGR 1900+14. Dashed blue lines show observations, and the theoretical light-curve for the most favourable orientation is shown with black solid lines. Red error bars are 1σ confidence intervals.

Source data

Extended Data Fig. 8 Folded soft X-ray light-curve (300-2000 eV) for magnetars.

A panel: 4U 0142+61, B panel 1E 1841-045. Dashed blue lines show observations, and the theoretical light-curve for the most favourable orientation is shown with black solid lines. Red error bars are 1σ confidence intervals.

Source data

Extended Data Fig. 9 Folded soft X-ray light-curve (300-2000 eV) for magnetars.

A panel: SGR 0501+4516, B panel 3XMM J185246.6+003317. Dashed blue lines show observations, and the theoretical light-curve for the most favourable orientation is shown with black solid lines. Red error bars are 1σ confidence intervals.

Source data

Extended Data Fig. 10 Folded soft X-ray light-curve (300-2000 eV) for 1RXS J170849.0–400910.

The dashed blue lines and red error bars are observations and 1σ confidence intervals. The solid black lines are the theoretical light-curve for the most favourable orientation.

Source data

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Igoshev, A.P., Hollerbach, R., Wood, T. et al. Strong toroidal magnetic fields required by quiescent X-ray emission of magnetars. Nat Astron 5, 145–149 (2021). https://doi.org/10.1038/s41550-020-01220-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing