The violent collisional history of aqueously evolved (2) Pallas


Asteroid (2) Pallas is the largest main-belt object not yet visited by a spacecraft, making its surface geology largely unknown and limiting our understanding of its origin and collisional evolution. Previous ground-based observational campaigns returned different estimates of its bulk density that are inconsistent with one another, one measurement1 being compatible within error bars with the icy Ceres (2.16 ± 0.01 g cm−3)2 and the other3 compatible within error bars with the rocky Vesta (3.46 ± 0.03 g cm−3)4. Here we report high-angular-resolution observations of Pallas performed with the extreme adaptive optics-fed SPHERE imager5 on the Very Large Telescope. Pallas records a violent collisional history, with numerous craters larger than 30 km in diameter populating its surface and two large impact basins that could be related to a family-forming impact. Monte Carlo simulations of the collisional evolution of the main belt correlate this cratering record to the high average impact velocity of ~11.5 km s−1 on Pallas—compared with an average of ~5.8 km s−1 for the asteroid belt—induced by Pallas’s high orbital inclination (i = 34.8°) and orbital eccentricity (e = 0.23). Compositionally, Pallas’s derived bulk density of 2.89 ± 0.08 g cm−3 (1σ uncertainty) is fully compatible with a CM chondrite-like body, as suggested by its spectral reflectance in the 3 μm wavelength region6. A bright spot observed on its surface may indicate an enrichment in salts during an early phase of aqueous alteration, compatible with Pallas’s relatively high albedo of 12–17% (refs. 7,8), although alternative origins are conceivable.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The two hemispheres of (2) Pallas as seen by VLT/SPHERE.
Fig. 2: Deconvolved images of (2) Pallas, compared with projections of the ADAM shape model and sketches highlighting the main geological features identified on Pallas.
Fig. 3: Mollweide projection of the 36 craters and the bright spot identified on the surface of Pallas.
Fig. 4: N-body simulations link the heavily cratered surface of Pallas to its highly inclined and eccentric orbit inducing a high average impact speed on this body.

Data availability

As soon as papers for our large programme are accepted for publication, we will make the corresponding reduced and deconvolved adaptive optics images and three-dimensional shape models publicly available at

Code availability

The code used to generate the three-dimensional shape is available at The modified SWIFT integrator used to model the orbital evolution of the Pallas family is available at


  1. 1.

    Schmidt, B. E. et al. The shape and surface variation of 2 Pallas from the Hubble Space Telescope. Science 326, 275–278 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    Park, R. S. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Carry, B. et al. Physical properties of (2) Pallas. Icarus 205, 460–472 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Beuzit, J. L. et al. SPHERE: the exoplanet imager for the Very Large Telescope. Astron. Astrophys. 631, A155 (2019).

    Article  Google Scholar 

  6. 6.

    Larson, H. P., Feierberg, M. A. & Lebofsky, L. A. The composition of asteroid 2 Pallas and its relation to primitive meteorites. Icarus 56, 398–408 (1983).

    ADS  Article  Google Scholar 

  7. 7.

    Tedesco, E. F., Noah, P. V., Noah, M. & Price, S. D. The supplemental IRAS minor planet survey. Astron. J. 123, 1056–1085 (2002).

    ADS  Article  Google Scholar 

  8. 8.

    Alí-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron. Astrophys. 612, A85 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Thalmann, C. et al. SPHERE ZIMPOL: overview and performance simulation. Proc. SPIE 7014, 70143F (2008).

  10. 10.

    Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).

    Article  Google Scholar 

  11. 11.

    Fusco, T. et al. Deconvolution of astronomical images obtained from ground-based telescopes with adaptive optics. Proc. SPIE 4839, 1065–1075 (2003).

  12. 12.

    Mugnier, L. M., Fusco, T. & Conan, J.-M. MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images. J. Opt. Soc. Am. A 21, 1841–1854 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Fétick, R. J. et al. Closing the gap between Earth-based and interplanet. mission observations: Vesta seen by VLT/SPHERE. Astron. Astrophys. 623, A6 (2019).

    Article  Google Scholar 

  14. 14.

    Scully, J. E. C. et al. Ceres’ Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater. Icarus 316, 46–62 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Schmedemann, N. et al. The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planet. Space Sci. 103, 104–130 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Hiesinger, H. et al. Cratering on Ceres: implications for its crust and evolution. Science 353, aaf4759 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press,1989).

  18. 18.

    Gladman, B. J. et al. On the asteroid belt’s orbital and size distribution. Icarus 202, 104–118 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    Viikinkoski, M., Kaasalainen, M. & Durech, J. ADAM: a general method for using various data types in asteroid reconstruction. Astron. Astrophys. 576, A8 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Schenk, P. et al. The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Consolmagno, G., Britt, D. & Macke, R. The significance of meteorite density and porosity. Chem. Erde Geochem. 68, 1–29 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    Vernazza, P. et al. Compositional homogeneity of CM parent bodies. Astron. J. 152, 54 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Doyle, P. M. et al. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 7444 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Masiero, J. R. et al. Preliminary analysis of WISE/NEOWISE 3-band cryogenic and post-cryogenic observations of main belt asteroids. Astrophys. J. 759, L8 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Nathues, A. et al. Sublimation in bright spots on (1) Ceres. Nature 528, 237–240 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    de León, J., Campins, H., Tsiganis, K., Morbidelli, A. & Licandro, J. Origin of the near-earth asteroid Phaethon and the Geminids meteor shower. Astron. Astrophys. 513, A26 (2010).

    Article  Google Scholar 

  27. 27.

    Todorović, N. The dynamical connection between Phaethon and Pallas. Mon. Not. R. Astron. Soc. 475, 601–604 (2018).

    ADS  Google Scholar 

  28. 28.

    Trigo-Rodríguez, J. M., Llorca, J., Borovička, J. & Fabregat, J. Spectroscopy of a Geminid fireball: its similarity to cometary meteoroids and the nature of its parent body. Earth Moon Planets 95, 375–387 (2004).

    ADS  Article  Google Scholar 

  29. 29.

    Borovička, J., Koten, P., Spurný, P., Boček, J. & Štork, R. A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids. Icarus 174, 15–30 (2005).

    ADS  Article  Google Scholar 

  30. 30.

    Borovička, J. Spectroscopic analysis of Geminid meteors. In Proc. 26th International Meteor Conference Bareges, France, 2007 (eds Rendtel, J. & Vaubaillon, J.) 42–51 (International Meteor Organization, 2010).

  31. 31.

    Kasuga, T., Watanabe, J. & Ebizuka, N. A 2004 Geminid meteor spectrum in the visible-ultraviolet region. Extreme Na depletion? Astron. Astrophys. 438, L17–L20 (2005).

    ADS  Article  Google Scholar 

  32. 32.

    Kasuga, T. Thermal evolution of the Phaethon-Geminid stream complex. Earth Moon Planets 105, 321–326 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Whipple, F. L. 1983 TB and the Geminid meteors. IAU Circular 3881 (1983).

  34. 34.

    Liu, Z. et al. A global database and statistical analyses of (4) Vesta craters. Icarus 311, 242–257 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690–694 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Marchi, S. et al. The missing large impact craters on Ceres. Nat. Commun. 7, 12257 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Pasckert, J. H. et al. Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA’s Dawn mission: implications for a heterogeneously composed crust. Icarus 316, 28–45 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    ADS  Article  Google Scholar 

  39. 39.

    Cibulková, H., Brož, M. & Benavidez, P. G. A six-part collisional model of the main asteroid belt. Icarus 241, 358–372 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Werner, S. C. & Ivanov, B. A. in Treatise on Geophysics (ed. Schubert, G.) 2nd edn 327–365 (Elsevier, 2015).

  41. 41.

    Viikinkoski, M. et al. VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno. Astron. Astrophys. 581, L3 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    Viikinkoski, M. Shape Reconstruction from Generalized Projections. PhD thesis, Tampere Univ. Technology (2016).

  43. 43.

    Marsset, M. et al. 3D shape of asteroid (6) Hebe from VLT/SPHERE imaging: implications for the origin of ordinary H chondrites. Astron. Astrophys. 604, A64 (2017).

    Article  Google Scholar 

  44. 44.

    Hanuš, J., Marchis, F., Viikinkoski, M., Yang, B. & Kaasalainen, M. Shape model of asteroid (130) Elektra from optical photometry and disk-resolved images from VLT/SPHERE and Nirc2/Keck. Astron. Astrophys. 599, A36 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    McLean, I. S. & Chaffee, F. H. Instrumentation for the Keck Observatory. Proc. SPIE 4008, 2–7 (2000).

  46. 46.

    Burns, J. A. & Safronov, V. S. Asteroid nutation angles. Mon. Not. R. Astron. Soc. 165, 403–411 (1973).

    ADS  Article  Google Scholar 

  47. 47.

    Chambat, F., Ricard, Y. & Valette, B. Flattening of the Earth: further from hydrostaticity than previously estimated. Geophys. J. Int. 183, 727–732 (2010).

    ADS  Article  Google Scholar 

  48. 48.

    Rambaux, N., Chambat, F. & Castillo-Rogez, J. C. Third-order development of shape, gravity, and moment of inertia for highly flattened celestial bodies. Application to Ceres. Astron. Astrophys. 584, A127 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    Lanzano, P. The equilibrium of a rotating body of arbitrary density. Astrophys. Space Sci. 29, 161–178 (1974).

    ADS  MATH  Article  Google Scholar 

  50. 50.

    Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).

  51. 51.

    Mainzer, A. et al. NEOWISE Diameters and Albedos V2.0 (NASA Planetary Data System, 2019);

  52. 52.

    Ivezić, Ž. et al. Color confirmation of asteroid families. Astron. J. 124, 2943–2948 (2002).

    ADS  Article  Google Scholar 

  53. 53.

    Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the Earth’s orbit. Astron. J. 101, 2287–2305 (1991).

    ADS  Article  Google Scholar 

  54. 54.

    Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    ADS  Article  Google Scholar 

  55. 55.

    Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011).

    ADS  Article  Google Scholar 

  56. 56.

    Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

    ADS  Google Scholar 

  57. 57.

    Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999).

    ADS  Article  Google Scholar 

  58. 58.

    Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004).

    ADS  Article  Google Scholar 

  59. 59.

    Farinella, P., Froeschlé, C. & Gonczi, R. Meteorite delivery and transport. IAU Symp. 160, 205–222 (1994).

    ADS  Google Scholar 

  60. 60.

    Alí-Lagoa, V. et al. Differences between the Pallas collisional family and similarly sized B-type asteroids. Astron. Astrophys. 591, A14 (2016).

    Article  Google Scholar 

  61. 61.

    Brož, M. & Morbidelli, A. A study of 3-dimensional shapes of asteroid families with an application to Eos. Icarus 317, 434–441 (2019).

    ADS  Article  Google Scholar 

  62. 62.

    Benz, W. & Asphaug, E. Impact simulations with fracture I—Method and tests. Icarus 107, 98–116 (1994).

    ADS  Article  Google Scholar 

  63. 63.

    Jutzi, M., Holsapple, K., Wünneman, K. & Michel, P. in Asteroids IV (eds Michel, P. et al.) 679–699 (Univ. Arizona Press, 2015).

  64. 64.

    Ševeček, P. et al. SPH/N-body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017).

    ADS  Article  Google Scholar 

  65. 65.

    Richardson, D. C., Quinn, T., Stadel, J. & Lake, G. Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143, 45–59 (2000).

    ADS  Article  Google Scholar 

  66. 66.

    Tillotson, J. H. Metallic Equations of State for Hypervelocity Impact GA–3216 (General Dynamics, 1962).

  67. 67.

    von Mises, R. Mechanik der festen krper im plastisch- deformablen zustand. Nachr. Ges. Wiss. Gott. Math. Phys. Klasse 4, 582–592 (1913).

    MATH  Google Scholar 

  68. 68.

    Grady, D. & Kipp, M. Continuum modelling of explosive fracture in oil shale. Int. J. Rock. Mech. Min. Sci. 17, 147–157 (1980).

    Article  Google Scholar 

  69. 69.

    Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995).

    ADS  MATH  Article  Google Scholar 

  70. 70.

    Bottke, W. F. & Greenberg, R. Asteroidal collision probabilities. Geophys. Res. Lett. 20, 879–881 (1993).

    ADS  Article  Google Scholar 

  71. 71.

    Bottke, W. F. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005).

    ADS  Article  Google Scholar 

  72. 72.

    Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).

    ADS  Article  Google Scholar 

  73. 73.

    Vilas, F. & Gaffey, M. J. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra. Science 246, 790–792 (1989).

    ADS  Article  Google Scholar 

  74. 74.

    Fornasier, S., Lantz, C., Barucci, M. A. & Lazzarin, M. Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy. Icarus 233, 163–178 (2014).

    ADS  Article  Google Scholar 

  75. 75.

    Cloutis, E. A. et al. Spectral reflectance properties of carbonaceous chondrites 4: aqueously altered and thermally metamorphosed meteorites. Icarus 220, 586–617 (2012).

    ADS  Article  Google Scholar 

  76. 76.

    Lantz, C. et al. Ion irradiation of carbonaceous chondrites: a new view of space weathering on primitive asteroids. Icarus 285, 43–57 (2017).

    ADS  Article  Google Scholar 

  77. 77.

    Rivkin, A. S., Asphaug, E. & Bottke, W. F. The case of the missing Ceres family. Icarus 243, 429–439 (2014).

    ADS  Article  Google Scholar 

  78. 78.

    Castillo-Rogez, J. et al. Insights into Ceres’s evolution from surface composition. Meteorit. Planet. Sci 53, 1820–1843 (2018).

    ADS  Article  Google Scholar 

  79. 79.

    Howard, K. T., Benedix, G. K., Bland, P. A. & Cressey, G. Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. degree, nature and settings of aqueous alteration. Geochim. Cosmochim. A 75, 2735–2751 (2011).

    ADS  Article  Google Scholar 

  80. 80.

    Alí-Lagoa, V. et al. Physical properties of B-type asteroids from WISE data. Astron. Astrophys. 554, A71 (2013).

    Article  Google Scholar 

  81. 81.

    Castillo-Rogez, J. C. et al. Iapetus’ geophysics: rotation rate, shape, and equatorial ridge. Icarus 190, 179–202 (2007).

    ADS  Article  Google Scholar 

  82. 82.

    Schmidt, B. E. & Castillo-Rogez, J. C. Water, heat, bombardment: the evolution and current state of (2) Pallas. Icarus 218, 478–488 (2012).

    ADS  Article  Google Scholar 

  83. 83.

    Opeil, C. P., Consolmagno, G. J. & Britt, D. T. The thermal conductivity of meteorites: new measurements and analysis. Icarus 208, 449–454 (2010).

    ADS  Article  Google Scholar 

  84. 84.

    Dufresne, E. R. & Anders, E. On the chemical evolution of the carbonaceous chondrites. Geochim. Cosmochim. A 26, 1085–1114 (1962).

    ADS  Article  Google Scholar 

  85. 85.

    Bland, P. A. & Travis, B. J. Giant convecting mud balls of the early Solar System. Sci. Adv. 3, e1602514 (2017).

    ADS  Article  Google Scholar 

  86. 86.

    Carry, B. et al. Homogeneous internal structure of CM-like asteroid (41) Daphne. Astron. Astrophys. 623, A132 (2019).

    Article  Google Scholar 

  87. 87.

    Alí-Lagoa, V. et al. Differences between the Pallas collisional family and similarly sized B-type asteroids. Astron. Astrophys. 591, A14 (2016).

    Article  Google Scholar 

  88. 88.

    Hanuš, J. et al. Shape, size, physical properties and nature of low-perihelion near-Earth asteroid (3200) Phaethon. In Proc. 48th AAS Division for Planetary Sciences Meeting 516.08 (American Astronomical Society, 2016).

  89. 89.

    Masiero, J. R., Wright, E. L. & Mainzer, A. K. Thermophysical modeling of NEOWISE observations of DESTINY+ targets phaethon and 2005 UD. Astron. J. 158, 97 (2019).

    ADS  Article  Google Scholar 

  90. 90.

    Kareta, T. et al. Rotationally resolved spectroscopic characterization of near-Earth object (3200) Phaethon. Astron. J. 156, 287 (2018).

    ADS  Article  Google Scholar 

  91. 91.

    Ito, T. et al. Extremely strong polarization of an active asteroid (3200) Phaethon. Nat. Commun. 9, 2486 (2018).

    ADS  Article  Google Scholar 

  92. 92.

    Cellino, A. et al. On the calibration of the relation between geometric albedo and polarimetric properties for the asteroids. Mon. Not. R. Astron. Soc. 451, 3473–3488 (2015).

    ADS  Article  Google Scholar 

  93. 93.

    Lupishko, D. F. Generalized calibration of the polarimetric albedo scale of asteroids. Solar Syst. Res. 52, 98–114 (2018).

    ADS  Article  Google Scholar 

  94. 94.

    Devogèle, M. et al. The phase-polarization curve of asteroid (3200) Phaethon. Mon. Not. R. Astron. Soc. 479, 3498–3508 (2018).

    ADS  Article  Google Scholar 

  95. 95.

    Shinnaka, Y. et al. Inversion angle of phase-polarization curve of near-Earth asteroid (3200) Phaethon. Astrophys. J. Lett. 864, L33 (2018).

    ADS  Article  Google Scholar 

  96. 96.

    Takir, D. et al. 3-μm spectroscopy of asteroid (3200) Phaethon: implications for B-asteroids. In Proc. 49th Lunar and Planetary Science Conference 2624 (LPI, 2018).

  97. 97.

    Arai, T. et al. DESTINY+ mission: flyby of Geminids parent asteroid (3200) Phaethon and in-situ analyses of dust accreting on the Earth. In Proc. 49th Lunar and Planetary Science Conference 2570 (LPI, 2018).

  98. 98.

    Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS  Article  Google Scholar 

Download references


Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 199.C-0074 (principal investigator: P.V.). This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with NASA. M.M. was supported by the National Aeronautics and Space Administration under grant number 80NSSC18K0849 issued through the Planetary Astronomy Program. This work was supported by the French Direction Générale de l’Armement (DGA) and Aix-Marseille Université (AMU). P.V., A.D. and B.C. were supported by CNRS/INSU/PNP. J.H., J.D. and P.S. were supported by the grant 18-09470S of the Czech Science Foundation and by the Charles University Research Programme number UNCE/SCI/023. M.Brož was supported by the grant 18-04514J of the Czech Science Foundation. E.J. is a F.R.S.-FNRS Senior Research Associate. The work of T.S.-R. was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 730890. This material reflects only the authors’ views and the commission is not liable for any use that may be made of the information contained herein.

Author information




P.V. is the principal investigator of the ESO large survey that acquired the images of Pallas. M.M. and P.V. designed and operated the survey in service mode. M.M. led the research on Pallas. M.M., P.V., R.F. and T.F. reduced and deconvolved the SPHERE images. A.D. performed the crater analysis. M.Brož analysed the Pallas family and ran the N-body and SPH simulations. D.C.R and E.A. provided some of the numerical codes used for the simulations. B.C. and J.H. retrieved earlier disk-resolved and disk-integrated data for Pallas from the literature. M.V. and J.H. reconstructed the three-dimensional shape of Pallas. N.R. and L.J. analysed the shape. B.C. provided the mass estimate. J.C.-R. performed the compositional analysis and thermophysical modelling of Pallas. M.M., M.Brož, P.V. and J.C.-R. worked jointly to write the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michaël Marsset.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Julia de Leon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Supplementary Tables 1–8 and corresponding references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marsset, M., Brož, M., Vernazza, P. et al. The violent collisional history of aqueously evolved (2) Pallas. Nat Astron 4, 569–576 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing