Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of presolar SiC in the Allende Curious Marie calcium–aluminium-rich inclusion


Calcium–aluminium-rich inclusions (CAIs) are one of the first solids to have condensed in the solar nebula, while presolar grains formed in various evolved stellar environments. It is generally accepted that CAIs formed close to the Sun at temperatures above 1,500 K, where presolar grains could not survive, and were then transported to other regions of the nebula where the accretion of planetesimals took place. In this context, a commonly held view is that presolar grains are found solely in the fine-grained rims surrounding chondrules and in the low-temperature fine-grained matrix that binds the various meteoritic components together. Here we demonstrate, on the basis of noble gas isotopic signatures, that presolar SiC grains were incorporated into fine-grained CAIs in the Allende carbonaceous chondrite at the time of their formation, and have survived parent-body processing. This finding provides new clues on the conditions in the nascent Solar System at the condensation of the first solids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three-isotope plots showing Xe composition in the Allende Curious Marie CAI.
Fig. 2: Krypton in the Allende Curious Marie CAI.
Fig. 3: Neon in the Allende Curious Marie CAI.
Fig. 4: Correlation between 22Ne/130Xe and 86Kr/82Kr in the G noble gas component carried by the presolar SiC grains.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are provided in the Supplementary Information as Supplementary Tables 14, and are also available from the corresponding author upon reasonable request.


  1. Black, D. C. & Pepin, R. O. Trapped neon in meteorites—II. Earth Planet. Sci. Lett. 6, 395–405 (1969).

    Article  ADS  Google Scholar 

  2. Lewis, R. S., Srinivasan, B. & Anders, E. Host phase of a strange xenon component in Allende. Science 190, 1251–1262 (1975).

    Article  ADS  Google Scholar 

  3. Srinivasan, B. & Anders, E. Noble gases in the Murchison meteorite. Science 201, 51–56 (1978).

    Article  ADS  Google Scholar 

  4. Tang, M. & Anders, E. Isotopic anomalies of Ne, Xe, and C in meteorites. II Interstellar diamond and SiC: carriers of exotic noble gases. Geochim. Cosmochim. Acta 52, 1235–1244 (1988).

    Article  ADS  Google Scholar 

  5. Lewis, R. S., Amari, S. & Anders, E. Meteoritic silicon carbide: pristine material from carbon stars. Nature 348, 293–298 (1990).

    Article  ADS  Google Scholar 

  6. Amari, S., Lewis, R. S. & Anders, E. Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58, 459–470 (1994).

    Article  ADS  Google Scholar 

  7. Lewis, R. S., Amari, S. & Anders, E. Interstellar grains in meteorites: II. SiC and its noble gases. Geochim. Cosmochim. Acta 58, 471–494 (1994).

    Article  ADS  Google Scholar 

  8. Tang, M., Anders, E., Hoppe, P. & Zinner, E. Meteoritic SiC and its stellar sources: implications for galactic chemical evolution. Nature 339, 351–354 (1989).

    Article  ADS  Google Scholar 

  9. Zinner, E., Tang, M. & Anders, E. Interstellar SiC in the Murchison and Murray meteorites: isotopic composition of Ne, Xe, Si, C, and N. Geochim. Cosmochim. Acta 53, 3273–3290 (1989).

    Article  ADS  Google Scholar 

  10. Ott, U., Begemann, F., Yang, J. & Epstein, S. S-process krypton of variable isotopic composition in the Murchison meteorite. Nature 332, 700–702 (1988).

    Article  ADS  Google Scholar 

  11. Grossman, L. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972).

    Article  ADS  Google Scholar 

  12. Krot, A. N. et al. Amoeboid olivine aggregates and related objects in carbonaceous chondrites: Records of nebular and asteroid processes. Chem. Erde 64, 185–239 (2004).

    Article  Google Scholar 

  13. Smith, P. S., Huneke, J. C., Rajan, R. S. & Wasserburg, G. J. Neon and argon in the Allende meteorite. Geochim. Cosmochim. Acta 41, 627–647 (1977).

    Article  ADS  Google Scholar 

  14. Vogel, N., Baur, H., Bischoff, A., Leya, I. & Wieler, R. Noble gas studies in CAIs from CV3 chondrites: no evidence for primordial noble gases. Meteorit. Planet. Sci. 39, 767–778 (2004).

    Article  ADS  Google Scholar 

  15. Göbel, R., Begemann, F. & Ott, U. On neutron induced and other noble gases in Allende inclusions. Geochim. Cosmochim. Acta 46, 1777–1792 (1982).

    Article  ADS  Google Scholar 

  16. Russel, S. S., Franchi, I. A., Verchovsky, A. B., Ash, R. D. & Pillinger, C. T. Carbon, nitrogen, and noble gases in Vigarano (CV) calcium–aluminum-rich inclusion: evidence for silicon carbide in refractory inclusions (abstract). Meteorit. Planet. Sci. 33, A132 (1998).

    Google Scholar 

  17. Pravdivtseva, O. V. et al. The I-Xe record of alteration in the Allende CV chondrite. Geochim. Cosmochim. Acta 67, 5011–5026 (2003).

    Article  ADS  Google Scholar 

  18. Swindle, T. D., Caffee, M. W., Hohenberg, C. M. & Lindstrom, M. M. I-Xe studies of Allende inclusions: EGGs and the Pink Angel. Geochim. Cosmochim. Acta 47, 2157–2177 (1988).

    Article  ADS  Google Scholar 

  19. Burkhardt, C. et al. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390–400 (2011).

    Article  ADS  Google Scholar 

  20. Shollenberger, Q. R., Render, J. & Brennecka, G. A. Er, Yb, and Hf isotopic compositions of refractory inclusions: an integrated isotopic fingerprint of the Solar System’s earliest reservoir. Earth Planet. Sci. Lett. 495, 12–23 (2018).

    Article  ADS  Google Scholar 

  21. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    Article  ADS  Google Scholar 

  22. MacPherson, G. J., Simon, S. B., Davis, A. M., Grossman, L. & Krot, A. N. in Chondrites and the Protoplanetary Disk (eds Krot, A. N. et al.) 225‒247 (Astronomical Society of the Pacific Conference Series Vol. 341, Sheridan Books, 2005).

  23. Tissot, F. L. H., Dauphas, N. & Grossman, L. Origin of uranium isotope variations in early solar nebula condensates. Sci. Adv. 2, e1501400 (2016).

    Article  ADS  Google Scholar 

  24. Boynton, W. V. Fractionation in the solar nebula: condensation of yttrium and rare earth elements. Geochim. Cosmochim. Acta 39, 569–584 (1975).

    Article  ADS  Google Scholar 

  25. Pravdivtseva, O., Meshik, A., Tissot F. L. H. & Dauphas, N. I-Xe studies of aqueous alteration in the Allende CAI Curious Marie. In Proc. 49th Lunar and Planetary Science Conference abstr. 2959 (Lunar and Planetary Institute, 2018).

  26. MacPherson, G. J. & Grossman, L. “Fluffy” type A Ca–Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 48, 29–46 (1984).

    Article  ADS  Google Scholar 

  27. Busemann, G., Baur, H. & Wieler, R. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

    Article  ADS  Google Scholar 

  28. Gallino, R., Busso, M., Picchio, G. & Raiteri, C. M. On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains. Nature 348, 298–302 (1990).

    Article  ADS  Google Scholar 

  29. Lewis, R. S. Rare gases in separated whitlockite from the St. Severin chondrite: xenon and krypton from fission of extinct 244Pu. Geochim. Cosmochim. Acta 39, 417–432 (1975).

    Article  ADS  Google Scholar 

  30. Hohenberg, C. M., Hudson, B., Kennedy, B. M. & Podosek, F. A. Xenon spallation systematics in Angra dos Reis. Geochim. Cosmochim. Acta 45, 1909–1915 (1981).

    Article  ADS  Google Scholar 

  31. Kim, J. S. & Marti, K. Solar type xenon: isotopic abundances in Pesyanoe. Proc. Lunar Planet Sci. 22, 145–151 (1992).

    ADS  Google Scholar 

  32. Lavielle, B. & Marti, K. Cosmic ray produced Kr in St. Severin core AIII. In Proc. 18th Lunar and Planetary Science Conference 565‒572 (Lunar and Planetary Institute, 1988).

  33. Leya, I., Lange, H. J., Neumann, S., Wieler, R. & Michel, R. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic ray particles. Meteorit. Planet. Sci. 35, 259–289 (2000).

    Article  ADS  Google Scholar 

  34. Mughabghab, S. F. Thermal Neutron Capture Cross-sections Resonance Integrals and g-factors INDC(NDS)-440 (IAEA, 2003).

  35. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    Article  ADS  Google Scholar 

  36. Huss, G. R. & Lewis, R. S. Presolar diamond, SiC and graphite in primitive chondrites: abundances as function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).

    Article  ADS  Google Scholar 

  37. Huss, G. R., Meshik, A. P., Smith, J. B. & Hohenberg, C. M. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta 67, 4823–4848 (2003).

    Article  ADS  Google Scholar 

  38. Davidson, J. et al. Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS. Geochim. Cosmochim. Acta 139, 248–266 (2014).

    Article  ADS  Google Scholar 

  39. Ott, U. & Merchel, S. Noble gases and not so unusual size of presolar SiC in Murchison. In Proc. 31st Lunar and Planetary Science Conference abstr. 1356 (Lunar and Planetary Institute, 2000).

  40. Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. P. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 60, 4853–4872 (1996).

    Article  ADS  Google Scholar 

  41. Lewis, R. S., Anders, E. & Drain, B. T. Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339, 117–121 (1989).

    Article  ADS  Google Scholar 

  42. Mendybaev, R. A. et al. Volatilization kinetics of silicon carbide in reducing gases: An experimental study with applications to survival of presolar grains in the solar nebula. Geochim. Cosmochim. Acta 66, 661–682 (2002).

    Article  ADS  Google Scholar 

  43. Stroud, R. Structural and elemental transformation of meteoritic nanodiamonds during in situ heating in a UHV scanning transmission electron microscope. In Proc. 82nd Annual Meeting of The Meteoritical Society abstr. 6457 (Lunar and Planetary Institute, 2019).

  44. Kimura, M. & Ikeda, Yu Anhydrous alteration of Allende chondrules in the solar nebula II: alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc. NIPR Simp. Antarct. Meteor. 8, 123–138 (1995).

    ADS  Google Scholar 

  45. Davis, A. M. & Grossman, L. Condensation and fractionation of rare earth in the solar nebula. Geochim. Cosmochim. Acta 43, 1611–1632 (1979).

    Article  ADS  Google Scholar 

  46. Krot, A. N., Petaev, M. I. & Bland, P. A. Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism. Antarct. Meteor. Res 17, 153–171 (2004).

    ADS  Google Scholar 

  47. Krot, A. N. et al. Mineralogy, petrography, oxygen and magnesium isotopic compositions and formation age of grossular-bearing assemblages in the Allende CAIs. In Proc. 41st Lunar and Planetary Science Conference abstr. 1406 (Lunar and Planetary Institute, 2010).

  48. Brearley, A. J. & Krot, A. N. in Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes (eds Harlov, D. & Austrheim, H.) 653‒782 (Lecture Notes in Earth Sciences Series, Springer Verlag, 2013).

  49. Tang, H., Liu, M.-Ch, McKeegan, K. D., Tissot, F. L. H. & Dauphas, N. In situ isotopic studies of the U-depleted Allende CAI Curious Marie: pre-accretionary alteration and the co-existence of 26Al and 36Cl in the early solar nebula. Geochim. Cosmochim. Acta 207, 1–18 (2017).

    Article  ADS  Google Scholar 

  50. Krot, A. N., Scott, E. R. & Zolensky, M. E. Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteor. Planet. Sci. 32, 31–49 (1997).

    Article  ADS  Google Scholar 

  51. Hohenberg, C. M. High sensitivity pulse-counting mass-spectrometer system for noble gas analysis. Rev. Sci. Instrum. 51, 1075–1082 (1980).

    Article  ADS  Google Scholar 

  52. Deer, W. A., Howie, R. A. & Zussman, J. An Introduction to the Rock-Forming Minerals (Mineralogical Society of Great Britain and Ireland, 2013).

Download references


We are grateful to D. Nakashima and A. Nguyen for the constructive and thorough review and for the help provided during the editorial process. We thank P. Heck, J. Holstein, and the Robert A. Pritzker Center for Meteoritics and Polar Studies at the Field Museum for providing the Curious Marie specimen (catalogue number ME3364-3.2). This work was supported by NASA grant 80NSSC19K0508 to O.P.; a Crosby Postdoctoral Fellowships (MIT), NSF-EAR grant 1824002, and start-up funds provided by Caltech to F.L.H.T.; by NASA grants NNX17AE86G (LARS), NNX17AE87G 531 (Emerging Worlds) and 80NSSC17K0744 (Habitable Worlds) to N.D.

Author information

Authors and Affiliations



O.P designed the study, conducted the noble gas analyses, treated the data and wrote the first draft of the paper. F.L.H.T. selected, prepared and characterized the studied sample. O.P. and S.A. interpreted the data. N.D. critically contributed to the paper presentation. All the authors contributed to the discussion of the results and commented on the manuscript.

Corresponding author

Correspondence to O. Pravdivtseva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Daisuke Nakashima, Ann Nguyen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravdivtseva, O., Tissot, F.L.H., Dauphas, N. et al. Evidence of presolar SiC in the Allende Curious Marie calcium–aluminium-rich inclusion. Nat Astron 4, 617–624 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing