Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae

Abstract

Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in comets are NH3 and HCN. It is known that ammonia readily combines with many acids, such as HCN, HNCO and HCOOH, encountered in the interstellar medium as well as in cometary ice to form ammonium salts (NH4+X) at low temperatures. Ammonium salts, which can have a substantial role in prebiotic chemistry, are hard to detect in space as they are unstable in the gas phase and their infrared signature is often hidden by thermal radiation or by, for example, OH in minerals. Here we report the presence of all possible sublimation products of five different ammonium salts in the comet 67P/Churyumov–Gerasimenko measured by the ROSINA instrument onboard Rosetta. The relatively high sublimation temperatures of the salts leads to an apparent lack of volatile nitrogen in the coma. This then also explains the observed trend of higher NH3/H2O ratios with decreasing perihelion distances in comets.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: NH3/H2O abundances from 1 August 2014 to 30 June 2016.
Fig. 2: DFMS mass spectra for m/z 17 and 36.
Fig. 3: DFMS mass spectra before, during and after dust impact.
Fig. 4: Abundance ratios normalized to H2O.
Fig. 5: Relative ammonia and elemental abundances in comets.

Data availability

The datasets analysed during the current study together with a user manual for data analysis are available in the ESA-PSA archive (https://www.cosmos.esa.int/web/psa/rosetta) or the NASA PDS archive (https://pdssbn.astro.umd.edu/data_sb/missions/rosetta/index.shtml).

References

  1. Dello Russo, N. D., Kawakita, H., Vervack, R. J. Jr & Weaver, H. A. Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013. Icarus 278, 301–332 (2016).

    ADS  Article  Google Scholar 

  2. Bockelée-Morvan, D. & Biver, N. The composition of cometary ices. Philos. Trans. R. Soc. A 375, 20160252 (2017).

    ADS  Article  Google Scholar 

  3. Geiss, J. in Cosmic Chemistry (ed. Klare, G.) 1–27 (Springer, 1988).

  4. Rubin, M. et al. Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 4, eaar6297 (2018).

    ADS  Article  Google Scholar 

  5. Cochran, A. L. & McKay, A. J. Erratum: ‘Strong CO+ and emission in comet C/2016 R2 (Pan-STARRS)’(2018, ApJL, 854, L10). Astrophys. J. Lett. 856, L20 (2018).

    ADS  Article  Google Scholar 

  6. Lodders, K. in Principles and Perspectives in Cosmochemistry: Lecture Notes of the Kodai School on ‘Synthesis of Elements in Stars’ held at Kodaikanal Observatory, India, April 29–May 13, 2008 (eds Goswami, A. & Reddy, E. B.) 379–419 (Springer, 2010).

  7. Jessberger, E. K., Christoforidis, A. & Kissel, J. Aspects of the major element composition of Halley’s dust. Nature 332, 691–695 (1988).

    ADS  Article  Google Scholar 

  8. Fray, N. et al. Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 469, S506–S516 (2017).

    Article  Google Scholar 

  9. DiSanti, M. A. et al. En route to destruction: the evolution in composition of ices in comet D/2012 S1 (ISON) between 1.2 and 0.34 AU from the sun as revealed at infrared wavelengths. Astrophys. J. 820, 34 (2016).

    ADS  Article  Google Scholar 

  10. Mumma, M. J. & Charnley, S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

    ADS  Article  Google Scholar 

  11. Whittet, D. C. B. et al. An ISO view of interstellar ices—first results. Astron. Astrophys. 315, L357–L360 (1996).

    ADS  Google Scholar 

  12. van Broekhuizen, F. A., Pontoppidan, K. M., Fraser, H. J. & Van Dishoeck, E. F. A 3–5 mm VLT spectroscopic survey of embedded young low mass stars II: solid OCN. Astron. Astrophys. 441, 249–260 (2005).

    ADS  Article  Google Scholar 

  13. De Sanctis, M. C. et al. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 536, 54–57 (2016).

    ADS  Article  Google Scholar 

  14. Quirico, E. et al. Refractory and semi-volatile organics at the surface of comet 67P/Churyumov–Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272, 32–47 (2016).

    ADS  Article  Google Scholar 

  15. Capaccioni, F. A. et al. The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).

    Article  Google Scholar 

  16. Bergner, J. B., Öberg, K. I., Rajappan, M. & Fayolle, E. C. Kinetics and mechanisms of the acid-base reaction between NH3 and HCOOH in interstellar ice analogs. Astrophys. J. 829, 85 (2016).

    ADS  Article  Google Scholar 

  17. Balsiger, H. et al. Rosina–Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci. Rev. 128, 745–801 (2007).

    ADS  Article  Google Scholar 

  18. Rubin, M. et al. Elemental and molecular abundances in comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 489, 594–607 (2019).

    ADS  Article  Google Scholar 

  19. Della Corte, V. et al. GIADA—Grain Impact Analyzer and Dust Accumulator—onboard Rosetta spacecraft: extended calibrations. Acta Astronaut. 126, 205–214 (2016).

    ADS  Article  Google Scholar 

  20. Gasc, S. et al. Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA. Mon. Not. R. Astron. Soc. 469, S108–S117 (2017).

    Article  Google Scholar 

  21. Hänni, N. et al. Ammonium salts as a source of small organic molecules observed with high-resolution electron-impact ionization mass spectrometry. Phys. Chem. A 123, 5805–5814 (2019).

    Article  Google Scholar 

  22. Meier, R., Eberhardt, P., Krankowsky, D. & Hodges, R. R. Ammonia in comet P/Halley. Astron. Astrophys. 287, 268–278 (1994).

    ADS  Google Scholar 

  23. De Keyser, J. et al. Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 469, S695–S711 (2017).

    Article  Google Scholar 

  24. Cottin, H. & Fray, N. Distributed sources in comets. Space Sci. Rev. 138, 179–197 (2008).

    ADS  Article  Google Scholar 

  25. Cordiner, M. A. et al. Mapping the release of volatiles in the inner comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) using the Atacama Large Millimeter/Submillimeter Array. Astrophys. J. Lett. 792, L2 (2014).

    ADS  Article  Google Scholar 

  26. Lis, D. C. et al. Hydrogen isocyanide in comet 73P/Schwassmann–Wachmann (fragment B). Astrophys. J. 675, 931–936 (2008).

    ADS  Article  Google Scholar 

  27. Cordiner, M. A. et al. ALMA mapping of rapid gas and dust variations in comet C/2012 S1 (ISON): new insights into the origin of cometary HNC. Astrophys. J. 838, 147 (2017).

    ADS  Article  Google Scholar 

  28. Altwegg, K. et al. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 2, e1600285 (2016).

    ADS  Article  Google Scholar 

  29. Pascal, R., Boiteau, L. & Commeyras, A. From the prebiotic synthesis of α-amino acids towards a primitive translation apparatus for the synthesis of peptides. Top. Curr. Chem. 259, 69–122 (2005).

    Article  Google Scholar 

  30. Huber, C. & Wächtershäuser, G. Primordial reductive amination revisited. Tetrahedron Lett. 44, 1695–1697 (2003).

    Article  Google Scholar 

  31. Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. G. & Russell, M. J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl Acad. Sci. USA 116, 4828–4833 (2019).

    ADS  Article  Google Scholar 

  32. Oro, J. Synthesis of adenine from ammonium cyanade. Biochem. Biophys. Res. Commun. 2, 407–412 (1960).

    Article  Google Scholar 

  33. Islam, S., Bučar, D.-K. & Powner, M. W. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 9, 584–589 (2017).

  34. Islam, S. & Powner, M. W. Prebiotic systems chemistry: complexity overcoming clutter. Chem 2, 470–501 (2017).

    Article  Google Scholar 

  35. Biver, N. et al. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 1, e1500863 (2015).

    ADS  Article  Google Scholar 

  36. Läuter, M., Kramer, T., Rubin, M. & Altwegg, K. Surface localization of gas sources on comet 67P/Churyumov–Gerasimenko based on DFMS/COPS data. Mon. Not. R. Astron. Soc. 483, 852–861 (2018).

    ADS  Google Scholar 

  37. Le Roy et al. Inventory of the volatiles on comet 67P/Churyumov–Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015).

    Article  Google Scholar 

  38. Calmonte, U. et al. Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 462, S253–S27 (2016).

    Article  Google Scholar 

  39. Steins, S. E. in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (eds Linstrom, P. J. & Mallard, W. G.) https://doi.org/10.18434/T4D303 (National Institute of Standards and Technology, 2018).

  40. Martinez, R., Bordalo, V., da Silveira, E. F. & Boechat-Roberty, H. M. Production of NH4 + and OCN ions by the interaction of heavy-ion cosmic rays with CO–NH3 interstellar ice. Mon. Not. R. Astron. Soc. 444, 3317–3327 (2014).

    ADS  Article  Google Scholar 

  41. Dunitz, J. D. et al. New light on an old story: the solid-state transformation of ammonium cyanate into urea. J. Am. Chem. Soc. 120, 13274–13275 (1998).

    Article  Google Scholar 

  42. Hand, C. W. & Bogan, D. J. Mass spectrum of isocyanic acid. J. Phys. Chem. 75, 1532–1536 (1971).

    Article  Google Scholar 

  43. Theulé, P. et al. Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astron. Astrophys. 534, A64 (2011).

    Article  Google Scholar 

  44. Kissel, J. et al. COSIMA—high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta. Space Sci. Rev. 128, 823–867 (2007).

    ADS  Article  Google Scholar 

  45. Fray, N. et al. High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 538, 72–74 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

ROSINA would not have produced such outstanding results without the work of the many engineers, technicians and scientists involved in the mission, in the Rosetta spacecraft team and in the ROSINA instrument team over the past 20 years, whose contributions are gratefully acknowledged. Rosetta is an ESA mission with contributions from its member states and NASA. We acknowledge herewith the work of the whole ESA Rosetta team. Work at the University of Bern was funded by the State of Bern, the Swiss National Science Foundation (SNSF, 200021_165869 and 200020_182418), the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 16.0008- 2, the European Space Agency’s PRODEX programme. S.W. acknowledges the financial support of the SNSF Eccellenza Professorial Fellowship PCEFP2_181150. J.D.K. acknowledges support by the Belgian Science Policy Office via PRODEX/ROSINA PEA 90020. S.A.F. acknowledges JPL contract 1496541. Work at UoM was supported by contracts JPL 1266313 and JPL 1266314 from the US Rosetta Project. H.C. is grateful to M. Powner for discussions about prebiotic chemistry during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.A. was principal investigator of the ROSINA instrument, analysed the data and wrote part of the paper. H.B., J.-J.B., M.C., J.D.K., B.F., S.A.F. and T.I.G. contributed hardware to the instrument. M.R., F.D., M.S., I.S. and T.S. operated and calibrated the instrument. N.H. did laboratory experiments on salts and added to the chemistry. C.B., H.C. and S.W. contributed the part of the paper about the interstellar and astrobiological consequences. All authors read and commented on the paper.

Corresponding author

Correspondence to Kathrin Altwegg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample DFMS spectra for m/z 60.

ROSINA-DFMS mass spectrum, Sept. 5, 2016, 18:34 h. Error bars are 1-σ statistical errors. Blue/Grey curves are the two Gaussians, which describe the peaks, sharing the width across the spectrum.

Extended Data Fig. 2 Total densities during the end of mission ellipses.

Total density from Aug. 26 to Sept. 5, 2016 (upper panel) and a zoom for Sept. 5, 15 h – 22 h UTC, measured by ROSINA-COPS. Also displayed are sub-spacecraft latitude in red and the filament current of DFMS for Sept. 5 in blue.

Extended Data Fig. 3 Ammonia density with time on 5./6. Sept. 2016.

Ammonia density as a function of time on 5./6. September 2016.

Extended Data Fig. 4 Amines and their fragments.

Comparison of methylamine and ethylamine fragments from electron impact ionization according to NIST and from measurements in space (Sept. 5, 2016, 20:19 h).

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altwegg, K., Balsiger, H., Hänni, N. et al. Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae. Nat Astron 4, 533–540 (2020). https://doi.org/10.1038/s41550-019-0991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0991-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing