Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater

Abstract

Since landing at Gale crater, Mars, in August 2012, the Curiosity rover has searched for evidence of past habitability, such as organic compounds, which have proved elusive to previous missions. We report results from pyrolysis experiments by Curiosity’s Sample Analysis at Mars (SAM) instrument, focusing on the isotopic compositions of evolved CO2 and O2, which provide clues to the identities and origins of carbon- and oxygen-bearing phases in surface materials. We find that O2 is enriched in 18O (δ18O about 40‰). Its behaviour reflects the presence of oxychlorine compounds at the Martian surface, common to aeolian and sedimentary deposits. Peak temperatures and isotope ratios (δ18O from −61 ± 4‰ to 64 ± 7‰; δ13C from –25 ± 20‰ to 56 ± 11‰) of evolved CO2 indicate the presence of carbon in multiple phases. We suggest that some organic compounds reflect exogenous input from meteorites and interplanetary dust, while others could derive from in situ formation processes on Mars, such as abiotic photosynthesis or electrochemical reduction of CO2. The observed carbonate abundances could reflect a sink for about 425–640 millibar of atmospheric CO2, while an additional 100–170 millibar could be stored in oxalates formed at the surface. In addition, oxygen isotope ratios of putative carbonates suggest the possibility of widespread cryogenic carbonate formation during a previous era.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CO2 isotopic composition displayed in stratigraphic context.
Fig. 2: CO2 isotopic composition (δ18O and δ13C) versus associated evolved gas analysis (EGA) sample peak temperature.
Fig. 3: Sketch displaying major processes and environments that affected the isotopic composition of carbon and oxygen in Gale crater samples.

Data availability

All SAM data are available at NASA’s Planetary Data System.

References

  1. 1.

    Freissinet, C. et al. Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. J. Geophys. Res. Planets 120, 495–514 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Eigenbrode, J. L. et al. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360, 1096–1101 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    Benner, S. A., Devine, K. G., Matveeva, L. N. & Powell, D. H. The missing organic molecules on Mars. Proc. Natl Acad. Sci. USA 97, 2425–2430 (2000).

    ADS  Article  Google Scholar 

  4. 4.

    Applin, D. M., Izawa, M. R. M., Cloutis, E. A., Goltz, D. & Johnson, J. R. Oxalate minerals on Mars? Earth Planet. Sci. Lett. 420, 127–139 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Sutter, B. et al. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the Curiosity rover’s Sample Analysis at Mars instrument from Yellowknife Bay to the Namib Dune. J. Geophys. Res. Planets 122, 2574–2609 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a warm, wet climate on early Mars. Icarus 71, 203–224 (1987).

    ADS  Article  Google Scholar 

  7. 7.

    Mahaffy, P. R. et al. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover. Science 341, 263–266 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Steele, A. et al. A reduced organic carbon component in martian basalts. Science 337, 212–215 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Jakosky, B. M. & Jones, J. H. The history of Martian volatiles. Rev. Geophys. 35, 1–16 (1997).

    ADS  Article  Google Scholar 

  10. 10.

    Webster, C. R. et al. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Jakosky, B. M. et al. Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Atreya, S. K. et al. Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Lett. 40, 1–5 (2013).

    Article  Google Scholar 

  13. 13.

    Wray, J. J. et al. Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res. Planets 121, 652–677 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Murchie, S. L. et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 114, E00D06 (2009).

    Google Scholar 

  16. 16.

    Bibring, J. P. et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Christensen, P. R. et al. Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001).

    ADS  Article  Google Scholar 

  18. 18.

    Pepin, R. O. Evolution of the martian atmosphere. Icarus 111, 289–304 (1994).

    ADS  Article  Google Scholar 

  19. 19.

    Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994).

    ADS  Article  Google Scholar 

  20. 20.

    Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic values. Icarus 92, 2–79 (1991).

    ADS  Article  Google Scholar 

  21. 21.

    Jakosky, B. Mars volatile evolution: evidence from stable isotopes. Icarus 94, 14–31 (1991).

    ADS  Article  Google Scholar 

  22. 22.

    Luhmann, J. G., Johnson, R. E. & Zhang, M. H. G. Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions. Geophys. Res. Lett. 19, 2151–2154 (1992).

    ADS  Article  Google Scholar 

  23. 23.

    Lundin, R., Lammer, H. & Ribas, I. Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    Bristow, T. F. et al. Low Hesperian P CO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl Acad. Sci. USA 114, 2166–2170 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Bultel, B., Viennet, J.-C., Poulet, F., Carter, J. & Werner, S. C. Detection of carbonates in Martian weathering profiles. J. Geophys. Res. Planets 124, 989–1007 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Wright, I. P., Grady, M. M. & Pillinger, C. T. Carbon, oxygen and nitrogen isotopic compositions of possible Martian weathering products in EETA 79001. Geochim. Cosmochim. Acta 52, 917–924 (1988).

    ADS  Article  Google Scholar 

  27. 27.

    Halevy, I., Fischer, W. W. & Eiler, J. M. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 +/– 4 degrees C in a near-surface aqueous environment. Proc. Natl Acad. Sci. USA 108, 16895–16899 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    Deines, P. Carbon isotope effects in carbonate systems. Geochim. Cosmochim. Acta 68, 2659–2679 (2004).

    ADS  Article  Google Scholar 

  29. 29.

    Craddock, R. A. & Greeley, R. Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512–526 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Valley, J. W. et al. Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy. Science 275, 1633–1638 (1997).

    ADS  Article  Google Scholar 

  31. 31.

    Chacko, T. & Deines, P. Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim. Cosmochim. Acta 72, 3642–3660 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Toyota, T. et al. Oxygen isotope fractionation during the freezing of sea water. J. Glaciol. 59, 697–710 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Staudigel, P. T. et al. Cryogenic brines as diagenetic fluids: reconstructing the diagenetic history of the Victoria Land Basin using clumped isotopes. Geochim. Cosmochim. Acta 224, 154–170 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Fairen, A. G. et al. A cold hydrological system in Gale crater, Mars. Planet. Space Sci. 93-94, 101–118 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Friedman, I. & O’Neil, J. R. in Data of Geochemistry 6th edn (ed. M. Fleischer) Ch. KK (USGS, 1977).

  36. 36.

    Elsila, J. E., Charnley, S. B., Burton, A. S., Glavin, D. P. & Dworkin, J. P. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways. Meteorit. Planet. Sci. 47, 1517–1536 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Stern, J. C. et al. The nitrate/(per)chlorate relationship on Mars. Geophys. Res. Lett. 44, 2643–2651 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Lasne, J. et al. Oxidants at the surface of Mars: a review in light of recent exploration results. Astrobiology 16, 977–996 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Davidson, J. A. et al. Carbon kinetic isotope effect in the reaction of CH4 with HO. J. Geophys. Res. Atmos. 92, 2195–2199 (1987).

    ADS  Article  Google Scholar 

  40. 40.

    Rudolph, J., Czuba, E. & Huang, L. The stable carbon isotopic fractionation for reactions of selected hydrocarbons with OH-radicals and its relevance for atmospheric chemistry. J. Geophys. Res. 105, 29329–29346 (2000).

    ADS  Article  Google Scholar 

  41. 41.

    Atreya, S. K. & Gu, Z. G. Photochemistry and stability of the atmosphere of Mars. Adv. Space Res. 16, 657–658 (1995).

    Article  Google Scholar 

  42. 42.

    Hori, Y., Murata, A. & Yoshinami, Y. Adsorption of CO, intermediately formed in electrochemical reduction of CO2, at a copper electrode. J. Chem. Soc. Faraday Trans. 87, 125 (1991).

    Article  Google Scholar 

  43. 43.

    Rahn, T. & Eiler, J. M. Experimental constraints on the fractionation of 13C/12C and 18O/16O ratios due to adsorption of CO2 on mineral substrates at conditions relevant to the surface of Mars. Geochim. Cosmochim. Acta 65, 839–846 (2001).

    ADS  Article  Google Scholar 

  44. 44.

    Bridges, J. C., Hicks, L. J. & Treiman, A. H. in Volatiles in the Martian Crust (eds J. Filiberto & S. P. Schwenzer) 89–118 (Elsevier, 2019).

  45. 45.

    Franz, H. B. et al. Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geosci. 10, 658–662 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    Franz, H. B. et al. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory. Planet. Space Sci. 96, 99–113 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Franz, H. B. et al. Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover. Planet. Space Sci. 109-110, 154–158 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    Franz, H. B. et al. Initial SAM calibration gas experiments on Mars: quadrupole mass spectrometer results and implications. Planet. Space Sci. 138, 44–54 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Franchi, I. A., Wright, I. P., Sexton, A. S. & Pillinger, C. T. The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657–661 (1999).

    ADS  Article  Google Scholar 

  51. 51.

    Coplen, T. B. New IUPAC guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data. J. Res. Natl Inst. Stand. Technol. 100, 285 (1995).

    Article  Google Scholar 

  52. 52.

    Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Trans. 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  53. 53.

    Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NASA’s Mars Exploration Program. We thank T. B. Griswold for figure production, R. H. Becker for discussion, and the technical team at the NASA Goddard Space Flight Center Planetary Environments Laboratory for laboratory support.

Author information

Affiliations

Authors

Contributions

H.B.F. developed QMS analytical methods, calculated QMS isotope ratios, interpreted results, performed calibration experiments, and wrote the manuscript and the Supplementary Information. C.R.W. and G.L.F. developed TLS analytical methods and calculated TLS isotope ratios. E.R., C.F. and M.M. assisted with QMS data analysis. H.B.F., A.C.McA., C.A.K., P.D.A. and J.M.T.L. performed supporting laboratory experiments. J.C.S. performed ground-truth isotopic analyses of calibrants. All authors participated in discussion of results or editing of the manuscript.

Corresponding author

Correspondence to H. B. Franz.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information Nature Astronomy thanks Alberto Fairen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CO2 and O2 evolved from Gale crater samples.

CO2 (isotopologue at m/z 45) evolved from aeolian (a), mudstone (except Vera Rubin Ridge) (b), sandstone (c) and Vera Rubin Ridge samples (d). e, O2 evolved from RN and CB samples. Data for samples in panels ac have been normalized to a single portion aliquot.

Extended Data Fig. 2 Laboratory CO2 data.

CO2 profile (isotopologue at m/z 44 or 45) from EGA analyses with laboratory test stands: carbonates (a); oxalates (b); acetates (c); benzoic and mellitic acids (d). The peak temperatures of CO2 evolved from Martian samples by SAM are compared with those from laboratory runs such as these to help identify the mineral phases present. The CaCO3 was the same synthetic material used for SAM flight model calibration.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–4, and Supplementary Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franz, H.B., Mahaffy, P.R., Webster, C.R. et al. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nat Astron 4, 526–532 (2020). https://doi.org/10.1038/s41550-019-0990-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing