Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progress in unveiling extreme particle acceleration in persistent astrophysical jets

Abstract

The most powerful persistent accelerators in the Universe are jetted active galaxies. Blazars, galaxies whose jets are directed towards Earth, dominate the extragalactic γ-ray sky. Still, most of the highest-energy particle accelerators probably elude detection. These extreme blazars, whose radiated energy can peak beyond 10 TeV, are ideal targets to study particle acceleration and radiative processes, and may provide links to cosmic rays and astrophysical neutrinos. The growing number of extreme blazars observed at teraelectronvolt energies has been critical for the emergence of γ-ray cosmology, including measurements of the extragalactic background light, tight bounds on the intergalactic magnetic field, and constraints on exotic physics at energies inaccessible with human-made accelerators. Tremendous progress has been achieved over the past decade, which bodes well for the future, particularly with the deployment of the Cherenkov Telescope Array.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Prototypical SEDs illustrating the three types of extreme behaviours.
Fig. 2: Radio number counts of extreme-synchrotron blazars and of different samples of BL Lacertae objects.
Fig. 3: Phenomenological models of the observed SED of the extreme blazar 1ES 0229+200.
Fig. 4: Observed TeV spectra of two extreme blazars including different γ-ray propagation models.

Data availability

All data presented in this study are included in this published article and its supplementary information files.

References

  1. 1.

    Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).

    ADS  Google Scholar 

  2. 2.

    Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803–845 (1995).

    ADS  Google Scholar 

  3. 3.

    Tavecchio, F., Ghisellini, G., Ghirlanda, G., Foschini, L. & Maraschi, L. TeV BL Lac objects at the dawn of the Fermi era. Mon. Not. R. Astron. Soc. 401, 1570–1586 (2010).

    ADS  Google Scholar 

  4. 4.

    Padovani, P. & Giommi, P. The connection between X-ray- and radio-selected BL Lacertae objects. Astrophys. J. 444, 567–581 (1995).

    ADS  Google Scholar 

  5. 5.

    Ghisellini, G. Extreme blazars. Astropart. Phys. 11, 11–18 (1999).

    ADS  Google Scholar 

  6. 6.

    Aharonian, F. et al. A low level of extragalactic background light as revealed by γ-rays from blazars. Nature 440, 1018–1021 (2006).

    ADS  Google Scholar 

  7. 7.

    Costamante, L. et al. Extreme synchrotron BL Lac objects. Stretching the blazar sequence. Astron. Astrophys. 371, 512–526 (2001).

    ADS  Google Scholar 

  8. 8.

    Costamante, L. et al. The NuSTAR view on hard-TeV BL Lacs. Mon. Not. R. Astron. Soc. 477, 4257–4268 (2018).

    ADS  Google Scholar 

  9. 9.

    Pian, E. et al. BeppoSAX observations of unprecedented synchrotron activity in the BL Lacertae object Markarian 501. Astrophys. J. Lett. 492, L17 (1998).

    ADS  Google Scholar 

  10. 10.

    Giommi, P., Padovani, P. & Perlman, E. Detection of exceptional X-ray spectral variability in the TeV BL Lac 1ES 2344+514. Mon. Not. R. Astron. Soc. 317, 743–749 (2000).

    ADS  Google Scholar 

  11. 11.

    Wakely, S. P. & Horan, D. TeVCat: an online catalog for very high energy gamma-ray astronomy. In Proc. 30th International Cosmic Ray Conference ICRC2007 Vol. 3 (eds Caballero, R. et al.) 1341–1344 (2008).

  12. 12.

    Ahnen, M. L. et al. First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310. Astron. Astrophys. 603, A25 (2017).

    Google Scholar 

  13. 13.

    Aharonian, F. et al. New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200. Astron. Astrophys. 475, L9–L13 (2007).

    ADS  Google Scholar 

  14. 14.

    Acciari, V. A. et al. Discovery of variability in the very high energy γ-ray emission of 1ES 1218+304 with VERITAS. Astrophys. J. 709, L163–L167 (2010).

    ADS  Google Scholar 

  15. 15.

    Aliu, E. et al. A three-year multi-wavelength study of the very-high-energy γ-ray blazar 1ES 0229+200. Astrophys. J. 782, 13 (2014).

    ADS  Google Scholar 

  16. 16.

    Ahnen, M. L. et al. Extreme HBL behavior of Markarian 501 during 2012. Astron. Astrophys. 620, A181 (2018).

    Google Scholar 

  17. 17.

    Archambault, S. et al. VERITAS detection of γ-ray flaring activity from the BL Lac object 1ES 1727+502 during bright moonlight observations. Astrophys. J. 808, 110 (2015).

    ADS  Google Scholar 

  18. 18.

    The Fermi-LAT Collaboration Fermi Large Area Telescope fourth source catalog. Preprint at https://arxiv.org/abs/1902.10045 (2019).

  19. 19.

    Chang, Y.-L., Arsioli, B., Giommi, P., Padovani, P. & Brandt, C. The 3HSP catalogue of extreme and high synchrotron peaked blazars. Astron. Astrophys. 632, A77 (2019).

    Google Scholar 

  20. 20.

    Paliya, V. S., Domínguez, A., Ajello, M., Franckowiak, A. & Hartmann, D. Fermi-LAT stacking analysis technique: an application to extreme blazars and prospects for their CTA detection. Astrophys. J. Lett. 882, L3 (2019).

    ADS  Google Scholar 

  21. 21.

    Padovani, P., Giommi, P., Landt, H. & Perlman, E. S. The Deep X-Ray Radio Blazar Survey. III. Radio number counts, evolutionary properties, and luminosity function of blazars. Astrophys. J. 662, 182–198 (2007).

    ADS  Google Scholar 

  22. 22.

    Ghisellini, G., Righi, C., Costamante, L. & Tavecchio, F. The Fermi blazar sequence. Mon. Not. R. Astron. Soc. 469, 255–266 (2017).

    ADS  Google Scholar 

  23. 23.

    Giommi, P. et al. A simplified view of blazars: clearing the fog around long-standing selection effects. Mon. Not. R. Astron. Soc. 420, 2899–2911 (2012).

    ADS  Google Scholar 

  24. 24.

    Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987).

    ADS  Google Scholar 

  25. 25.

    Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    ADS  Google Scholar 

  26. 26.

    Schlickeiser, R. Cosmic-ray transport and acceleration. I. Derivation of the kinetic equation and application to cosmic rays in static cold media. Astrophys. J. 336, 243 (1989).

    ADS  Google Scholar 

  27. 27.

    Rieger, F. M. An introduction to particle acceleration in shearing flows. Galaxies 7, 78 (2019).

    ADS  Google Scholar 

  28. 28.

    Kagan, D., Sironi, L., Cerutti, B. & Giannios, D. Relativistic magnetic reconnection in pair plasmas and its astrophysical applications. Space Sci. Rev. 191, 545–573 (2015).

    ADS  Google Scholar 

  29. 29.

    Katarzyński, K., Ghisellini, G., Tavecchio, F., Gracia, J. & Maraschi, L. Hard TeV spectra of blazars and the constraints to the infrared intergalactic background. Mon. Not. R. Astron. Soc. 368, L52–L56 (2006).

    ADS  Google Scholar 

  30. 30.

    Ghisellini, G., Tavecchio, F. & Chiaberge, M. Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties. Astron. Astrophys. 432, 401–410 (2005).

    ADS  Google Scholar 

  31. 31.

    Chhotray, A. et al. On radiative acceleration in spine-sheath structured blazar jets. Mon. Not. R. Astron. Soc. 466, 3544–3557 (2017).

    ADS  Google Scholar 

  32. 32.

    Lefa, E., Rieger, F. M. & Aharonian, F. Formation of very hard gamma-ray spectra of blazars in leptonic models. Astrophys. J. 740, 64 (2011).

    ADS  Google Scholar 

  33. 33.

    Böttcher, M., Dermer, C. D. & Finke, J. D. The hard VHE γ-ray emission in high-redshift TeV blazars: comptonization of cosmic microwave background radiation in an extended jet? Astrophys. J. 679, L9 (2008).

    ADS  Google Scholar 

  34. 34.

    Tavecchio, F., Ghisellini, G., Ghirlanda, G., Costamante, L. & Franceschini, A. The hard TeV spectrum of 1ES 0229+200: new clues from Swift. Mon. Not. R. Astron. Soc. 399, L59–L63 (2009).

    ADS  Google Scholar 

  35. 35.

    Tramacere, A., Massaro, E. & Taylor, A. M. Stochastic acceleration and the evolution of spectral distributions in synchro-self-compton sources: a self-consistent modeling of blazars’ flares. Astrophys. J. 739, 66 (2011).

    ADS  Google Scholar 

  36. 36.

    Cerruti, M., Zech, A., Boisson, C. & Inoue, S. A hadronic origin for ultra-high-frequency-peaked BL Lac objects. Mon. Not. R. Astron. Soc. 448, 910–927 (2015).

    ADS  Google Scholar 

  37. 37.

    Aharonian, F. A. TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. N. Astron. 5, 377–395 (2000).

    ADS  Google Scholar 

  38. 38.

    Murase, K., Dermer, C. D., Takami, H. & Migliori, G. Blazars as ultra-high-energy cosmic-ray sources: implications for TeV gamma-ray observations. Astrophys. J. 749, 63 (2012).

    ADS  Google Scholar 

  39. 39.

    Essey, W., Kalashev, O. E., Kusenko, A. & Beacom, J. F. Secondary photons and neutrinos from cosmic rays produced by distant blazars. Phys. Rev. Lett. 104, 141102 (2010).

    ADS  Google Scholar 

  40. 40.

    Taylor, A. M., Vovk, I. & Neronov, A. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011).

    ADS  Google Scholar 

  41. 41.

    Dzhatdoev, T. A., Khalikov, E. V., Kircheva, A. P. & Lyukshin, A. A. Electromagnetic cascade masquerade: a way to mimic γ-axion-like particle mixing effects in blazar spectra. Astron. Astrophys. 603, A59 (2017).

    ADS  Google Scholar 

  42. 42.

    Tavecchio, F. On the hadronic cascade scenario for extreme BL Lacs. Mon. Not. R. Astron. Soc. 438, 3255–3262 (2014).

    ADS  Google Scholar 

  43. 43.

    Oikonomou, F., Murase, K. & Kotera, K. Synchrotron pair halo and echo emission from blazars in the cosmic web: application to extreme TeV blazars. Astron. Astrophys. 568, A110 (2014).

    ADS  Google Scholar 

  44. 44.

    IceCube Collaboration. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

  45. 45.

    Aartsen, M. G. et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).

    ADS  Google Scholar 

  46. 46.

    Gao, S., Fedynitch, A., Winter, W. & Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 3, 88–92 (2019).

    ADS  Google Scholar 

  47. 47.

    Cerruti, M. et al. Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056. Mon. Not. R. Astron. Soc. 483, L12–L16 (2019).

    ADS  Google Scholar 

  48. 48.

    Keivani, A. et al. A multimessenger picture of the flaring blazar TXS 0506+056: implications for high-energy neutrino emission and cosmic-ray acceleration. Astrophys. J. 864, 84 (2018).

    ADS  Google Scholar 

  49. 49.

    Liu, R.-Y. et al. Hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare. Phys. Rev. D 99, 063008 (2019).

    ADS  Google Scholar 

  50. 50.

    Tavecchio, F., Ghisellini, G. & Guetta, D. Structured jets in BL Lac objects: efficient PeV neutrino factories? Astrophys. J. 793, L18 (2014).

    ADS  Google Scholar 

  51. 51.

    Padovani, P., Petropoulou, M., Giommi, P. & Resconi, E. A simplified view of blazars: the neutrino background. Mon. Not. R. Astron. Soc. 452, 1877–1887 (2015).

    ADS  Google Scholar 

  52. 52.

    Guilbert, P. W., Fabian, A. C. & Rees, M. J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 205, 593–603 (1983).

    ADS  Google Scholar 

  53. 53.

    Arons, J. Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341–367 (2012).

    ADS  Google Scholar 

  54. 54.

    Hillas, A. M. The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984).

    ADS  Google Scholar 

  55. 55.

    Aab, A. et al. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications. Phys. Rev. D 90, 122006 (2014).

    ADS  Google Scholar 

  56. 56.

    Taylor, A. M., Ahlers, M. & Hooper, D. Indications of negative evolution for the sources of the highest energy cosmic rays. Phys. Rev. D 92, 063011 (2015).

    ADS  Google Scholar 

  57. 57.

    Ajello, M. et al. The cosmic evolution of Fermi BL Lacertae objects. Astrophys. J. 780, 73 (2014).

    ADS  Google Scholar 

  58. 58.

    Taylor, A. M., Ahlers, M. & Aharonian, F. A. Need for a local source of ultrahigh-energy cosmic-ray nuclei. Phys. Rev. D 84, 105007 (2011).

    ADS  Google Scholar 

  59. 59.

    Lemoine, M. & Waxman, E. Anisotropy vs chemical composition at ultra-high energies. J. Cosmol. Astropart. Phys. 2009, 009 (2009).

    Google Scholar 

  60. 60.

    Matthews, J. H., Bell, A. R., Blundell, K. M., Araudo, A. T., Fornax, A. & Centaurus, A. and other radio galaxies as sources of ultrahigh energy cosmic rays. Mon. Not. R. Astron. Soc. 479, L76–L80 (2018).

    ADS  Google Scholar 

  61. 61.

    Alves Batista, R. et al. Open questions in cosmic-ray research at ultrahigh energies. Front. Astron. Space Sci. 6, 23 (2019).

    ADS  Google Scholar 

  62. 62.

    Hauser, M. G. & Dwek, E. The cosmic infrared background: measurements and implications. Annu. Rev. Astron. Astrophys. 39, 249–307 (2001).

    ADS  Google Scholar 

  63. 63.

    Franceschini, A. & Rodighiero, G. The extragalactic background light revisited and the cosmic photon-photon opacity. Astron. Astrophys. 603, A34 (2017).

    ADS  Google Scholar 

  64. 64.

    Biteau, J. & Williams, D. A. The extragalactic background light, the Hubble constant, and anomalies: conclusions from 20 years of TeV gamma-ray observations. Astrophys. J. 812, 60 (2015).

    ADS  Google Scholar 

  65. 65.

    Desai, A. et al. A GeV–TeV measurement of the extragalactic background light. Astrophys. J. Lett. 874, L7 (2019).

    ADS  Google Scholar 

  66. 66.

    Ackermann, M. et al. The imprint of the extragalactic background light in the gamma-ray spectra of blazars. Science 338, 1190–1192 (2012).

    ADS  Google Scholar 

  67. 67.

    H.E.S.S. Collaboration Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S. Astron. Astrophys. 550, A4 (2013).

    Google Scholar 

  68. 68.

    H.E.S.S. Collaboration Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars. Astron. Astrophys. 606, A59 (2017).

    Google Scholar 

  69. 69.

    Acciari, V. A. et al. Measurement of the extragalactic background light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1. Mon. Not. R. Astron. Soc. 486, 4233–4251 (2019).

    ADS  Google Scholar 

  70. 70.

    Durrer, R. & Neronov, A. Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013).

    ADS  Google Scholar 

  71. 71.

    Vafin, S., Rafighi, I., Pohl, M. & Niemiec, J. The electrostatic instability for realistic pair distributions in blazar/EBL cascades. Astrophys. J. 857, 43 (2018).

    ADS  Google Scholar 

  72. 72.

    Neronov, A. & Vovk, I. Evidence for strong extragalactic magnetic fields from fermi observations of TeV blazars. Science 328, 73–75 (2010).

    ADS  Google Scholar 

  73. 73.

    Ackermann, M. et al. The search for spatial extension in high-latitude sources detected by the Fermi Large Area Telescope. Astrophys. J. Suppl. 237, 32 (2018).

    ADS  Google Scholar 

  74. 74.

    H.E.S.S. Collaboration Search for extended γ-ray emission around AGN with H.E.S.S. & Fermi-LAT. Astron. Astrophys. 562, A145 (2014).

    Google Scholar 

  75. 75.

    Archambault, S. et al. Search for magnetically broadened cascade emission from blazars with VERITAS. Astrophys. J. 835, 288 (2017).

    ADS  Google Scholar 

  76. 76.

    Liberati, S. Tests of Lorentz invariance: a 2013 update. Class. Quantum Gravity 30, 133001 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  77. 77.

    de Angelis, A., Galanti, G. & Roncadelli, M. Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D 84, 105030 (2011).

    ADS  Google Scholar 

  78. 78.

    Abdalla, H. et al. The 2014 TeV γ-ray flare of Mrk 501 seen with H.E.S.S.: temporal and spectral constraints on Lorentz invariance violation. Astrophys. J. 870, 93 (2019).

    ADS  Google Scholar 

  79. 79.

    Lang, R. G., Martínez-Huerta, H. & de Souza, V. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 99, 043015 (2019).

    ADS  Google Scholar 

  80. 80.

    Abramowski, A. et al. Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum. Phys. Rev. D 88, 102003 (2013).

    ADS  Google Scholar 

  81. 81.

    Galanti, G., Tavecchio, F., Roncadelli, M. & Evoli, C. Blazar VHE spectral alterations induced by photon-ALP oscillations. Mon. Not. R. Astron. Soc. 487, 123–132 (2019).

    ADS  Google Scholar 

  82. 82.

    Merloni, A. et al. eROSITA science book: mapping the structure of the energetic Universe. Preprint at https://arxiv.org/abs/1209.3114 (2012).

  83. 83.

    Krawczynski, H. et al. Astro2020 science white paper: Using X-ray polarimetry to probe the physics of black holes and neutron stars. Preprint at https://arxiv.org/abs/1904.09313 (2019).

  84. 84.

    de Angelis, A. et al. Science with e-ASTROGAM. A space mission for MeV–GeV gamma-ray astrophysics. J. High. Energy Astrophys. 19, 1–106 (2018).

    ADS  Google Scholar 

  85. 85.

    Cherenkov Telescope Array Consortium et al. Science with the Cherenkov Telescope Array (World Scientific, 2019).

  86. 86.

    Bai, X. et al. The Large High Altitude Air Shower Observatory (LHAASO) science white paper. Preprint at https://arxiv.org/abs/1905.02773 (2019).

  87. 87.

    Albert, A. et al. Science case for a wide field-of-view very-high-energy gamma-ray observatory in the Southern Hemisphere. Preprint at https://arxiv.org/abs/1902.08429 (2019).

  88. 88.

    Sironi, L., Keshet, U. & Lemoine, M. Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191, 519–544 (2015).

    ADS  Google Scholar 

  89. 89.

    Wong, K., Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. First-principles demonstration of diffusive particle acceleration in kinetic simulations of relativistic plasma turbulence. Preprint at https://arxiv.org/abs/1901.03439 (2019).

  90. 90.

    Paul, J., Wei, J., Basa, S. & Zhang, S.-N. The Chinese–French SVOM mission for gamma-ray burst studies. C. R. Phys. 12, 298–308 (2011).

    ADS  Google Scholar 

  91. 91.

    Aartsen, M. G. et al. IceCube-Gen2: a vision for the future of neutrino astronomy in Antarctica. Preprint at https://arxiv.org/abs/1412.5106 (2014).

  92. 92.

    Adrián-Martínez, S. et al. Letter of intent for KM3NeT 2.0. J. Phys. G 43, 084001 (2016).

    ADS  Google Scholar 

  93. 93.

    The Pierre Auger Collaboration The Pierre Auger Observatory upgrade — preliminary design report. Preprint at https://arxiv.org/abs/1604.03637 (2016).

  94. 94.

    Sagawa, H. Telescope Array extension: TAx4. Proc. Sci. 236, 657 (2016).

    Google Scholar 

  95. 95.

    Silva, L., Granato, G. L., Bressan, A. & Danese, L. Modeling the effects of dust on galactic spectral energy distributions from the ultraviolet to the millimeter band. Astrophys. J. 509, 103–117 (1998).

    ADS  Google Scholar 

  96. 96.

    Scarpa, R. et al. The Hubble Space Telescope Survey of BL Lacertae objects. I. Surface brightness profiles, magnitudes, and radii of host galaxies. Astrophys. J. 532, 740–815 (2000).

    ADS  Google Scholar 

  97. 97.

    Aharonian, F. A. et al. The time averaged TeV energy spectrum of MKN 501 of the extraordinary 1997 outburst as measured with the stereoscopic Cherenkov telescope system of HEGRA. Astron. Astrophys. 349, 11–28 (1999).

    ADS  Google Scholar 

  98. 98.

    Tavecchio, F. et al. Theoretical implications from the spectral evolution of Markarian 501 observed with BeppoSAX. Astrophys. J. 554, 725–733 (2001).

    ADS  Google Scholar 

  99. 99.

    Ghisellini, G., Celotti, A. & Costamante, L. Low power BL Lacertae objects and the blazar sequence. Clues on the particle acceleration process. Astron. Astrophys. 386, 833–842 (2002).

    ADS  Google Scholar 

  100. 100.

    Tavecchio, F. & Bonnoli, G. On the detectability of Lorentz invariance violation through anomalies in the multi-TeV γ-ray spectra of blazars. Astron. Astrophys. 585, A25 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

E.Prandini has received funding from the European Union’s Horizon2020 research and innovation programme under the Marie Sklodowska–Curie grant agreement no. 664931. E.Pueschel acknowledges the Young Investigators Program of the Helmholtz Association. F.T. acknowledges contribution from the grant INAF CTA–SKA ‘Probing particle acceleration and γ-ray propagation with CTA and its precursors’ and the INAF Main Stream project ‘High-energy extragalactic astrophysics: toward the Cherenkov Telescope Array’. This Perspective is the result of several fruitful discussions raised during the meeting eXtreme19 (22–25 January 2019, Padova, Italy). The authors, as chairs of the scientific committee and review speakers, thank all the participants of the meeting: C. Arcaro, B. Balmaverde, U. Barres de Almeida, E. Benítez, D. Bernard, E. Bernardini, M. Boettcher, S. Boula, A. Caccianiga, C. Casadio, I. Christie, A. De Angelis, L. Di Gesu, A. di Matteo, I. Donnarumma, M. Doro, T. Dzhatdoev, V. Fallah Ramazani, R. Ferrazzoli, I. Florou, L. Foffano, L. Foschini, N. I. Fraija, A. Franceschini, G. Galanti, M. Gonzalez, O. Gueta, O. Hervet, S. Kerasioti, F. Krauss, M. Kreter, G. La Mura, R. Lico, R. Lopez Coto, M. Lucchini, M. Mallamaci, M. Manganaro, A. Marinelli, M. Mariotti, K. Nalewajko, E. Nokhrina, F. Oikonomou, L. Olivera-Nieto, S. Paiano, V. Paliya, D. Paneque, Z. Pei, C. Perennes, S. Rainò, P. Romano, A. Sharma, G. Sigl, C. Sinnis, P. Soffitta, A. Spolon, B. Sversut Arsioli, A. Tramacere, S. Vercellone, V. Vittorini and H. Xiao.

Author information

Affiliations

Authors

Contributions

J.B. and E.Prandini coordinated the work and mostly contributed to the introduction and ‘Perspectives’ section. L.C. and P.P. mostly contributed to the ‘Extreme observational properties’ section. M.L., E.R., A.T. and A.Z. mostly contributed to the ‘The challenge of modelling extreme blazars’ section. E.Pueschel and F.T. mostly contributed to the ‘Extreme blazars and tests of γ-ray propagation’ section. All authors discussed the material and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to J. Biteau or E. Prandini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Giacomo Bonnoli, James Matthews and Fumio Takahara for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biteau, J., Prandini, E., Costamante, L. et al. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat Astron 4, 124–131 (2020). https://doi.org/10.1038/s41550-019-0988-4

Download citation

Further reading

  • The Pacific Ocean Neutrino Experiment

    • Matteo Agostini
    • , Michael Böhmer
    • , Jeff Bosma
    • , Kenneth Clark
    • , Matthias Danninger
    • , Christian Fruck
    • , Roman Gernhäuser
    • , Andreas Gärtner
    • , Darren Grant
    • , Felix Henningsen
    • , Kilian Holzapfel
    • , Matthias Huber
    • , Reyna Jenkyns
    • , Carsten B. Krauss
    • , Kai Krings
    • , Claudio Kopper
    • , Klaus Leismüller
    • , Sally Leys
    • , Paul Macoun
    • , Stephan Meighen-Berger
    • , Jan Michel
    • , Roger Moore
    • , Mike Morley
    • , Paolo Padovani
    • , Laszlo Papp
    • , Benoit Pirenne
    • , Chuantao Qiu
    • , Immacolata Carmen Rea
    • , Elisa Resconi
    • , Adrian Round
    • , Albert Ruskey
    • , Christian Spannfellner
    • , Michael Traxler
    • , Andrea Turcati
    •  & Juan Pablo Yanez

    Nature Astronomy (2020)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing