Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions of type I X-ray bursts with thin accretion disks

Abstract

Careful observations of X-ray spectra during type I X-ray bursts have hinted at changes occurring in the inner regions of the accretion disks around the neutron-star component of the binary system. Here, we perform a set of numerical experiments studying the interaction of such bursts with thin, Shakura–Sunyaev-type accretion disks. We now clearly demonstrate a number of key effects that take place simultaneously, including evidence for weak, radiation-driven outflows along the surface of the disk; substantial levels of Poynting–Robertson (PR) drag, leading to enhanced accretion; and prominent heating in the disk, which increases the height, while lowering the density and optical depth. The PR drag causes the inner edge of the disk to retreat from the neutron-star surface toward larger radii and then recover on the timescale of the burst. We conclude that the rich interaction of an X-ray burst with the surrounding disk provides a novel way to study the physics of accretion onto compact objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spacetime diagrams of the surface density.
Fig. 2: Track of the inner radius of the accretion disk.
Fig. 3: Spacetime diagrams of the effective optical depth.
Fig. 4: Spacetime diagrams of the mass flux through each radial shell.
Fig. 5: Pseudocolour plot of the mass flux in the meridional plane with streamlines of the velocity field.
Fig. 6: Demonstration of PR drag.

Similar content being viewed by others

Data availability

The data required to reproduce all figures, except Fig. 5 and Supplementary Fig. 4, are provided in the Source Data. The raw simulation data are available from the corresponding author on reasonable request.

References

  1. Lewin, W. H. G., van Paradijs, J. & Taam, R. E. X-ray bursts. Space Sci. Rev. 62, 223–389 (1993).

    Article  ADS  Google Scholar 

  2. Strohmayer, T. & Bildsten, L. in Compact Stellar X-Ray Sources (eds Lewin, W. & van der Klis, M.) 113–156 (Cambridge Astrophysics Series No. 39, Cambridge University Press, 2006).

  3. Galloway, D.K. & Keek, L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions (eds Belloni, T. & Mendez, M.) (ASSL, Springer, in the press).

  4. Güver, T., Psaltis, D. & Özel, F. Systematic uncertainties in the spectroscopic measurements of neutron-star masses and radii from thermonuclear x-ray bursts. I. Apparent radii. Astrophys. J. 747, 76 (2012).

    Article  ADS  Google Scholar 

  5. Kajava, J. J. E. et al. The influence of accretion geometry on the spectral evolution during thermonuclear (type I) X-ray bursts. Mon. Not. R. Astron. Soc. 445, 4218–4234 (2014).

    Article  ADS  Google Scholar 

  6. Nättilä, J. et al. Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra. Astron. Astrophys. 608, A31 (2017).

    Article  Google Scholar 

  7. Ballantyne, D. R. & Everett, J. E. On the dynamics of suddenly heated accretion disks around neutron stars. Astrophys. J. 626, 364–372 (2005).

    Article  ADS  Google Scholar 

  8. in’t Zand, J. J. M., Galloway, D. K. & Ballantyne, D. R. Achromatic late-time variability in thermonuclear x-ray bursts. an accretion disk disrupted by a nova-like shell? Astron. Astrophys. 525, A111 (2011).

    Article  ADS  Google Scholar 

  9. Degenaar, N. et al. Accretion disks and coronae in the x-ray flashlight. Space Sci. Rev. 214, 15 (2018).

    Article  ADS  Google Scholar 

  10. Maccarone, T. J. & Coppi, P. S. Spectral fits to the 1999 Aql X-1 outburst data. Astron. Astrophys. 399, 1151–1157 (2003).

    Article  ADS  Google Scholar 

  11. Chen, Y.-P. et al. The hard X-ray behavior of Aql X-1 during type-I bursts. Astrophys. J. 777, L9 (2013).

    Article  ADS  Google Scholar 

  12. Ji, L. et al. X-ray bursts as a probe of the corona: the case of XRB 4U 1636-536. Mon. Not. R. Astron. Soc. 432, 2773–2778 (2013).

    Article  ADS  Google Scholar 

  13. Ballantyne, D. R. & Strohmayer, T. E. The evolution of the accretion disk around 4U 1820-30 during a superburst. Astrophys. J. 602, L105–L108 (2004).

    Article  ADS  Google Scholar 

  14. Keek, L., Ballantyne, D. R., Kuulkers, E. & Strohmayer, T. E. Characterizing the evolving x-ray spectral features during a superburst from 4U 1636-536. Astrophys. J. 789, 121 (2014).

    Article  ADS  Google Scholar 

  15. Keek, L., Ballantyne, D. R., Kuulkers, E. & Strohmayer, T. E. X-raying an accretion disk in realtime: the evolution of ionized reflection during a superburst from 4U 1636-536. Astrophys. J. 797, L23 (2014).

    Article  ADS  Google Scholar 

  16. Keek, L. et al. NICER observes the effects of an X-ray burst on the accretion environment in Aql X-1. Astrophys. J. 855, L4 (2018).

    Article  ADS  Google Scholar 

  17. Fragile, P. C., Ballantyne, D. R., Maccarone, T. J. & Witry, J. W. L. Simulating the collapse of a thick accretion disk due to a Type I X-ray burst from a neutron star. Astrophys. J. 867, L28 (2018).

    Article  ADS  Google Scholar 

  18. Fragile, P. C. Effective inner radius of tilted black hole accretion disks. Astrophys. J. 706, L246–L250 (2009).

    Article  ADS  Google Scholar 

  19. Walker, M. A. & Meszaros, P. The dynamical influence of radiation in type 1 X-ray bursts. Astrophys. J. 346, 844–846 (1989).

    Article  ADS  Google Scholar 

  20. in’t Zand, J. J. M. et al. A bright thermonuclear x-ray burst simultaneously observed with Chandra and RXTE. Astron. Astrophys. 553, A83 (2013).

    Article  Google Scholar 

  21. Worpel, H., Galloway, D. K. & Price, D. J. Evidence for accretion rate change during type I X-ray bursts. Astrophys. J. 772, 94 (2013).

    Article  ADS  Google Scholar 

  22. Worpel, H., Galloway, D. K. & Price, D. J. Evidence for enhanced persistent emission during sub-Eddington thermonuclear bursts. Astrophys. J. 801, 60 (2015).

    Article  ADS  Google Scholar 

  23. Walker, M. A. Radiation dynamics in x-ray binaries. I. Type 1 bursts. Astrophys. J. 385, 642 (1992).

    Article  ADS  Google Scholar 

  24. Ballantyne, D. R. Reflection spectra from an accretion disc illuminated by a neutron star x-ray burst. Mon. Not. R. Astron. Soc. 351, 57–62 (2004).

    Article  ADS  Google Scholar 

  25. Zhang, S. et al. The enhanced x-ray timing and polarimetry mission—eXTP. Sci. China Phys. Mech. Astron. 62, 29502 (2019).

    Article  ADS  Google Scholar 

  26. Ray, P. S. et al. STROBE-X: X-ray timing and spectroscopy on dynamical timescales from microseconds to years. Preprint at https://arxiv.org/abs/1903.03035 (2019).

  27. Anninos, P., Fragile, P. C. & Salmonson, J. D. Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement. Astrophys. J. 635, 723–740 (2005).

    Article  ADS  Google Scholar 

  28. Fragile, P. C., Gillespie, A., Monahan, T., Rodriguez, M. & Anninos, P. Numerical simulations of optically thick accretion onto a black hole. I. Spherical case. Astrophys. J. Suppl. Ser. 201, 9 (2012).

    Article  ADS  Google Scholar 

  29. Fragile, P. C., Olejar, A. & Anninos, P. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow. Astrophys. J. 796, 22 (2014).

    Article  ADS  Google Scholar 

  30. Fragile, P. C., Etheridge, S. M., Anninos, P., Mishra, B. & Kluźniak, W. Relativistic, viscous, radiation hydrodynamic simulations of geometrically thin disks. I. Thermal and other instabilities. Astrophys. J. 857, 1 (2018).

    Article  ADS  Google Scholar 

  31. Miller, M. C. & Miller, J. M. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 548, 1–34 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  32. Levermore, C. D. Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984).

    Article  ADS  Google Scholar 

  33. Sa̧dowski, A., Narayan, R., Tchekhovskoy, A. & Zhu, Y. Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes. Mon. Not. R. Astron. Soc. 429, 3533–3550 (2013).

    Article  ADS  Google Scholar 

  34. Hirose, S., Krolik, J. H. & Blaes, O. Radiation-dominated disks are thermally stable. Astrophys. J. 691, 16–31 (2009).

    Article  ADS  Google Scholar 

  35. Narayan, R. & Yi, I. Advection-dominated accretion: underfed black holes and neutron stars. Astrophys. J. 452, 710 (1995).

    Article  ADS  Google Scholar 

  36. Norris, J. P. et al. Long-lag, wide-pulse gamma-ray bursts. Astrophys. J. 627, 324–345 (2005).

    Article  ADS  Google Scholar 

  37. Novikov, I. D. & Thorne, K. S. in Black Holes (Les Astres Occlus) (eds Dewitt, C. & Dewitt, B. S.) 343–450 (Gordon and Breach, 1973).

  38. Abramowicz, M. A. & Fragile, P. C. Foundations of black hole accretion disk theory. Living Rev. Rel. 16, 1 (2013).

    Article  Google Scholar 

  39. Penna, R. F., Sa̧owski, A. & McKinney, J. C. Thin-disc theory with a non-zero-torque boundary condition and comparisons with simulations. Mon. Not. R. Astron. Soc. 420, 684–698 (2012).

    Article  ADS  Google Scholar 

  40. Chandrasekhar, S. Radiative Transfer (Dover, 1960). .

  41. Lapidus, I. I. & Sunyaev, R. A. Angular distribution and polarization of X-ray-burster radiation (during stationary and flash phases). Mon. Not. R. Astron. Soc. 217, 291–303 (1985).

    Article  ADS  Google Scholar 

  42. Mahmoodifar, S. & Strohmayer, T. X-ray burst oscillations: from flame spreading to the cooling wake. Astrophys. J. 818, 93 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.C.F. and A.B. acknowledge support from SC NASA EPSCoR RGP 2017 and National Science Foundation grants AST-1616185 and AST-1907850. P.C.F. acknowledges support from National Science Foundation grant PHY-1748958. A.B. acknowledges support from the College of Charleston Undergraduate Research and Creative Activities Board, through SURF grant SU2019-01. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Author information

Authors and Affiliations

Authors

Contributions

P.C.F. wrote the manuscript with input from all authors. P.C.F. and D.R.B. wrote the funding proposal that supported this work. P.C.F. and A.B. designed and executed the simulations and analysed the results.

Corresponding author

Correspondence to P. Chris Fragile.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragile, P.C., Ballantyne, D.R. & Blankenship, A. Interactions of type I X-ray bursts with thin accretion disks. Nat Astron 4, 541–546 (2020). https://doi.org/10.1038/s41550-019-0987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0987-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing