Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi

Abstract

Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies1. Although these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to date precisely the age at which any one merger occurred. Recent results have revealed a population of stars that were accreted via the collision of a dwarf galaxy, called Gaia–Enceladus1, leading to substantial pollution of the chemical and dynamical properties of the Milky Way. Here we identify the very bright, naked-eye star ν Indi as an indicator of the age of the early in situ population of the Galaxy. We combine asteroseismic, spectroscopic, astrometric and kinematic observations to show that this metal-poor, alpha-element-rich star was an indigenous member of the halo, and we measure its age to be \(11.0\pm 0.7\) (stat) \(\pm 0.8\) (sys) billion years. The star bears hallmarks consistent with having been kinematically heated by the Gaia–Enceladus collision. Its age implies that the earliest the merger could have begun was 11.6 and 13.2 billion years ago, at 68% and 95% confidence, respectively. Computations based on hierarchical cosmological models slightly reduce the above limits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: [Mg/Fe] versus [Fe/H] abundances of a large sample of Milky Way stars, from the APOGEE DR-14 spectroscopic survey data release8.
Fig. 2: Velocities of stars from APOGEE-DR14 having [Fe/H] values within uncertainties of the [Fe/H] value of \(\nu\) Indi.
Fig. 3: Contour plot of the distribution in eccentricity, \(e\), and maximum vertical excursion from the Galactic mid-plane, \({z}_{\max }\), for the same high-[Mg/Fe] (blue) and low-[Mg/Fe] (red) samples of stars as Fig. 2.
Fig. 4: Frequency–power spectrum of the TESS lightcurve of \(\nu\) Indi, showing a rich spectrum of solar-like oscillations. The ordinate is in power spectral density (PSD) units of parts per million squared per μHz.

Data availability

Raw TESS data are available from the MAST portal at https://archive.stsci.edu/access-mast-data. The TASOC lightcurve is available at https://tasoc.dk/. The TESS lightcurve and power spectrum is also available on request from the corresponding author. The high-resolution spectroscopic data are available at http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form (HARPS \(\nu\) Indi), https://www.blancocuaresma.com/s/benchmarkstars (HARPS solar spectrum), and http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form (FEROS). MARCS model atmospheres are available at http://marcs.astro.uu.se/. APOGEE Data Release 14 may be accessed via https://www.sdss.org/dr14/.

Code availability

The adopted asteroseismic modelling results were provided by the BeSPP code, which is available on request from A.M.S. (aldos@ice.csic.es). NLTE corrections were estimated using the interactive online tool at http://nlte.mpia.de. The computation of Kurucz models with ATLAS9 was performed using http://atmos.obspm.fr/index.php/documentation/7. Publicly available codes used to model the data include IRAF (http://ast.noao.edu/data/software), MOOG (https://www.as.utexas.edu/chris/moog.html), the MCMC code emcee (https://github.com/dfm/emcee), the peak-bagging codes DIAMONDS (https://github.com/EnricoCorsaro/DIAMONDS) and TAMCMC-C (https://github.com/OthmanB/TAMCMC-C), the stellar evolution code MESA (http://mesa.sourceforge.net/), and the stellar pulsation code GYRE (https://bitbucket.org/rhdtownsend/gyre/wiki/Home). Other codes used in the analysis—including frequency analysis tools—are available on reasonable request via the corresponding author.

References

  1. 1.

    Helmi, A. et al. The merger that led to the formation of the Milky Way as inner stellar halo and thick disk. Nature 563, 85–88 (2018).

    ADS  Google Scholar 

  2. 2.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). In Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave Vol. 9143 Proc. SPIE 914320 (2014).

  3. 3.

    Stassun, K. G. et al. The TESS input catalog and candidate target list. Astron. J. 156, 102 (2018).

    ADS  Google Scholar 

  4. 4.

    GaiaCollaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  5. 5.

    Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  6. 6.

    Kaufer, A. et al. Commissioning FEROS, the new high-resolution spectrograph at La Silla. Messenger 95, 8–12 (1999).

    ADS  Google Scholar 

  7. 7.

    Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, A71 (2014).

    ADS  Google Scholar 

  8. 8.

    Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    ADS  Google Scholar 

  9. 9.

    Hayes, C. R. et al. Disentangling the Galactic halo with APOGEE. I. Chemical and kinematical investigation of distinct metal-poor populations. Astrophys. J. 852, 49 (2018).

    ADS  Google Scholar 

  10. 10.

    Mackereth, J. T. et al. The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon. Not. R. Astron. Soc. 482, 3426–3442 (2019).

    ADS  Google Scholar 

  11. 11.

    Font, A. S. et al. Cosmological simulations of the formation of the stellar haloes around disc galaxies. Mon. Not. R. Astron. Soc. 416, 2802–2820 (2011).

    ADS  Google Scholar 

  12. 12.

    McCarthy, I. G. et al. Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 420, 2245–2262 (2012).

    ADS  Google Scholar 

  13. 13.

    Tissera, P. B. et al. The central spheroids of Milky Way mass-sized galaxies. Mon. Not. R. Astron. Soc. 473, 1656–1666 (2018).

    ADS  Google Scholar 

  14. 14.

    Schofield, M. et al. The asteroseismic target list for solar-like oscillators observed in 2 minute cadence with the transiting exoplanet survey satellite. Astrophys. J. Suppl. Ser. 241, 12 (2019).

    ADS  Google Scholar 

  15. 15.

    Chaplin, W. J. & Miglio, A. Asteroseismology of solar-type and red-giant stars. Annu. Rev. Astron. Astrophys. 51, 353–392 (2013).

    ADS  Google Scholar 

  16. 16.

    Bedding, T. R. et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011).

    ADS  Google Scholar 

  17. 17.

    Bedding, T. R. et al. Solar-like oscillations in the metal-poor subgiant V Indi: constraining the mass and age using asteroseismology. Astrophys. J. 647, 558–563 (2006).

    ADS  Google Scholar 

  18. 18.

    Carrier, F. et al. Solar-like oscillations in the metal-poor subgiant \(\nu\) Indi. II. Acoustic spectrum and mode lifetime. Astron. Astrophys. 470, 1059–1063 (2007).

    Google Scholar 

  19. 19.

    Høg, E. et al. The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 355, L27–L30 (2000).

    ADS  Google Scholar 

  20. 20.

    Serenelli, A. et al. The first APOKASC catalog of Kepler dwarf and subgiant stars. Astrophys. J. Suppl. Ser. 233, 23 (2017).

    ADS  Google Scholar 

  21. 21.

    Vincenzo, F. et al. The fall of a giant. Chemical evolution of Enceladus, alias the Gaia sausage. Mon. Not. R. Astron. Soc. 487, L47–L52 (2019).

    ADS  Google Scholar 

  22. 22.

    Gallart, C. et al. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nat. Astron. 3, 932–939 (2019).

    ADS  Google Scholar 

  23. 23.

    Velazquez, H. & White, S. D. M. Sinking satellites and the heating of galaxy discs. Mon. Not. R. Astron. Soc. 304, 254–270 (1999).

    ADS  Google Scholar 

  24. 24.

    Blanco-Cuaresma, S., Soubiran, C., Jofré, P. & Heiter, U. The Gaia FGK benchmark stars. High resolution spectral library. Astron. Astrophys. 566, A98 (2014).

    ADS  Google Scholar 

  25. 25.

    Tody, D. The IRAF Data Reduction and Analysis System. In Instrumentation in Astronomy VI (ed. Crawford, D. L.) Vol. 627 SPIE Conf. Ser. 733 (1986).

  26. 26.

    Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    ADS  Google Scholar 

  27. 27.

    Chen, Y. Q., Nissen, P. E., Zhao, G., Zhang, H. W. & Benoni, T. Chemical composition of 90 F and G disk dwarfs. Astron. Astrophys. Suppl. 141, 491–506 (2000).

    ADS  Google Scholar 

  28. 28.

    Meléndez, J. et al. 18 Sco: a solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging. Astrophys. J. 791, 14 (2014).

    ADS  Google Scholar 

  29. 29.

    Reddy, B. E., Tomkin, J., Lambert, D. L. & Allende Prieto, C. The chemical compositions of Galactic disc F and G dwarfs. Mon. Not. R. Astron. Soc. 340, 304–340 (2003).

    ADS  Google Scholar 

  30. 30.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  31. 31.

    Morel, T. et al. Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields. Astron. Astrophys. 564, A119 (2014).

    Google Scholar 

  32. 32.

    Bruntt, H. et al. Accurate fundamental parameters for 23 bright solar-type stars. Mon. Not. R. Astron. Soc. 405, 1907–1923 (2010).

    ADS  Google Scholar 

  33. 33.

    Morel, T. The chemical composition of α Centauri AB revisited. Astron. Astrophys. 615, A172 (2018).

    ADS  Google Scholar 

  34. 34.

    Bergemann, M., Lind, K., Collet, R., Magic, Z. & Asplund, M. Non-LTE line formation of Fe in late-type stars — I. Standard stars with 1D and 3D model atmospheres. Mon. Not. R. Astron. Soc. 427, 27–49 (2012).

    ADS  Google Scholar 

  35. 35.

    Bergemann, M. & Cescutti, G. Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy. Astron. Astrophys. 522, A9 (2010).

    ADS  Google Scholar 

  36. 36.

    Bergemann, M., Pickering, J. C. & Gehren, T. NLTE analysis of Co i/Co ii lines in spectra of cool stars with new laboratory hyperfine splitting constants. Mon. Not. R. Astron. Soc. 401, 1334–1346 (2010).

    ADS  Google Scholar 

  37. 37.

    Bergemann, M. et al. Red supergiant stars as cosmic abundance probes. II. NLTE effects in J-band silicon lines. Astrophys. J. 764, 115 (2013).

    ADS  Google Scholar 

  38. 38.

    Bergemann, M. et al. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models. I. Methods and application to magnesium abundances in standard stars. Astrophys. J. 847, 15 (2017).

    ADS  Google Scholar 

  39. 39.

    Bergemann, M. & Gehren, T. NLTE abundances of Mn in a sample of metal-poor stars. Astron. Astrophys. 492, 823–831 (2008).

    ADS  Google Scholar 

  40. 40.

    Bergemann, M. et al. Observational constraints on the origin of the elements. I. 3D NLTE formation of Mn lines in late-type stars. Astron. Astrophys. 631, A80 (2019).

    Google Scholar 

  41. 41.

    Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K. & Vaughan, A. H. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984).

    ADS  Google Scholar 

  42. 42.

    Henry, T. J., Soderblom, D. R., Donahue, R. A. & Baliunas, S. L. A survey of Ca II H and K chromospheric emission in southern solar-type stars. Astron. J. 111, 439 (1996).

    ADS  Google Scholar 

  43. 43.

    Wright, J. T. Do we know of any Maunder minimum stars? Astron. J. 128, 1273 (2004).

    ADS  Google Scholar 

  44. 44.

    Mamajek, E. E. & Hillenbrand, L. A. Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. Astrophys. J. 687, 1264–1293 (2008).

    ADS  Google Scholar 

  45. 45.

    Zasowski, G. et al. Target selection for the apache point observatory Galactic evolution experiment (APOGEE). Astron. J. 146, 81 (2013).

    ADS  Google Scholar 

  46. 46.

    Zasowski, G. et al. Target selection for the SDSS-IV APOGEE-2 survey. Astron. J. 154, 198 (2017).

    ADS  Google Scholar 

  47. 47.

    Bovy, J. galpy: a Python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    ADS  Google Scholar 

  48. 48.

    GravityCollaboration et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, L15 (2018).

    ADS  Google Scholar 

  49. 49.

    Bennett, M. & Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. Mon. Not. R. Astron. Soc. 482, 1417–1425 (2019).

    ADS  Google Scholar 

  50. 50.

    Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    ADS  Google Scholar 

  51. 51.

    Jenkins, J. M. et al. The TESS science processing operations center. In Software and Cyberinfrastructure for Astronomy IV Vol. 9913 Proc. SPIE 99133E (2016).

  52. 52.

    Lund, M. N., Handberg, R., Kjeldsen, H., Chaplin, W. J. & Christensen-Dalsgaard, J. Data preparation for asteroseismology with TESS. In European Physical Journal Web of Conferences Vol. 160, 01005 (2017).

  53. 53.

    Kjeldsen, H. et al. Solar-like oscillations in α Centauri B. Astrophys. J. 635, 1281–1290 (2005).

    ADS  Google Scholar 

  54. 54.

    Bedding, T. R. et al. Solar-like oscillations in the G2 subgiant β hydri from dual-site observations. Astrophys. J. 663, 1315–1324 (2007).

    ADS  Google Scholar 

  55. 55.

    Benomar, O., Appourchaux, T. & Baudin, F. The solar-like oscillations of HD 49933: a Bayesian approach. Astron. Astrophys. 506, 15–32 (2009).

    MATH  ADS  Google Scholar 

  56. 56.

    Gaulme, P., Appourchaux, T. & Boumier, P. Mode width fitting with a simple Bayesian approach. Application to CoRoT targets HD 181420 and HD 49933. Astron. Astrophys. 506, 7–14 (2009).

    ADS  Google Scholar 

  57. 57.

    Mosser, B. et al. Spin down of the core rotation in red giants. Astron. Astrophys. 548, A10 (2012).

    Google Scholar 

  58. 58.

    Corsaro, E. & De Ridder, J. DIAMONDS: a new Bayesian nested sampling tool. Application to peak bagging of solar-like oscillations. Astron. Astrophys. 571, A71 (2014).

    Google Scholar 

  59. 59.

    Corsaro, E., De Ridder, J. & García, R. A. Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler. Astron. Astrophys. 579, A83 (2015).

    Google Scholar 

  60. 60.

    Vrard, M. et al. Helium signature in red giant oscillation patterns observed by Kepler. Astron. Astrophys. 579, A84 (2015).

    Google Scholar 

  61. 61.

    Nielsen, M. B., Schunker, H., Gizon, L., Schou, J. & Ball, W. H. Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra. Astron. Astrophys. 603, A6 (2017).

    ADS  Google Scholar 

  62. 62.

    Roxburgh, I. W. Anomalies in the Kepler asteroseismic legacy project SATA. A re-analysis of 16 Cyg A and B, KIC 8379927 and 6 solar-like stars. Astron. Astrophys. 604, A42 (2017).

    ADS  Google Scholar 

  63. 63.

    García Saravia Ortiz de Montellano, A., Hekker, S. & Themeßl, N. Automated asteroseismic peak detections. Mon. Not. R. Astron. Soc. 476, 1470–1496 (2018).

    ADS  Google Scholar 

  64. 64.

    Benomar, O. et al. Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars. Science 361, 1231–1234 (2018).

    ADS  Google Scholar 

  65. 65.

    Kallinger, T., Beck, P. G., Stello, D. & Garcia, R. A. Non-linear seismic scaling relations. Astron. Astrophys. 616, A104 (2018).

    ADS  Google Scholar 

  66. 66.

    Davies, G. R. et al. Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts? Mon. Not. R. Astron. Soc. 445, L94–L98 (2014).

    ADS  Google Scholar 

  67. 67.

    Casagrande, L. & VandenBerg, D. A. Synthetic stellar photometry — II. Testing the bolometric flux scale and tables of bolometric corrections for the Hipparcos/Tycho, Pan-STARRS1, SkyMapper, and JWST systems. Mon. Not. R. Astron. Soc. 475, 5023–5040 (2018).

    ADS  Google Scholar 

  68. 68.

    Stassun, K. G. & Torres, G. Eclipsing binaries as benchmarks for trigonometric parallaxes in the Gaia era. Astron. J. 152, 180 (2016).

    ADS  Google Scholar 

  69. 69.

    Torres, G. et al. Improved spectroscopic parameters for transiting planet hosts. Astrophys. J. 757, 161 (2012).

    ADS  Google Scholar 

  70. 70.

    Salaris, M., Chieffi, A. & Straniero, O. The alpha-enhanced isochrones and their impact on the FITS to the Galactic globular cluster system. Astrophys. J. 414, 580–600 (1993).

    ADS  Google Scholar 

  71. 71.

    Rendle, B. M. et al. AIMS — a new tool for stellar parameter determinations using asteroseismic constraints. Mon. Not. R. Astron. Soc. 484, 771–786 (2019).

    ADS  Google Scholar 

  72. 72.

    Ong, J. M. J. & Basu, S. Explaining deviations from the scaling relationship of the large frequency separation. Astrophys. J. 870, 41 (2019).

    ADS  Google Scholar 

  73. 73.

    SilvaAguirre, V. et al. Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample. II. Radii, masses, and ages. Astrophys. J. 835, 173 (2017).

    ADS  Google Scholar 

  74. 74.

    Mosumgaard, J. R., Ball, W. H., SilvaAguirre, V., Weiss, A. & Christensen-Dalsgaard, J. Stellar models with calibrated convection and temperature stratification from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 478, 5650–5659 (2018).

    ADS  Google Scholar 

  75. 75.

    Ball, W. H. & Gizon, L. Surface-effect corrections for oscillation frequencies of evolved stars. Astron. Astrophys. 600, A128 (2017).

    ADS  Google Scholar 

  76. 76.

    Lebreton, Y. & Goupil, M. J. Asteroseismology for ‘à la carte’ stellar age-dating and weighing. Age and mass of the CoRoT exoplanet host HD 52265. Astron. Astrophys. 569, A21 (2014).

    ADS  Google Scholar 

  77. 77.

    Yildiz, M., Çelik Orhan, Z. & Kayhan, C. Fundamental properties of Kepler and CoRoT targets. III. Tuning scaling relations using the first adiabatic exponent. Mon. Not. R. Astron. Soc. 462, 1577–1590 (2016).

    ADS  Google Scholar 

  78. 78.

    Lacey, C. & Cole, S. Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 262, 627–649 (1993).

    ADS  Google Scholar 

  79. 79.

    Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).

    ADS  Google Scholar 

  80. 80.

    Mo, H., van den Bosch, F. C. & White, S. Galaxy Formation and Evolution (Cambridge University Press, 2010).

  81. 81.

    Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W. & Belokurov, V. Evidence for two early accretion events that built the Milky Way stellar halo. Mon. Not. R. Astron. Soc. 488, 1235–1247 (2019).

    ADS  Google Scholar 

  82. 82.

    Correa, C. A., Wyithe, J. S. B., Schaye, J. & Duffy, A. R. The accretion history of dark matter haloes. I. The physical origin of the universal function. Mon. Not. R. Astron. Soc. 450, 1514–1520 (2015).

    ADS  Google Scholar 

  83. 83.

    Correa, C. A., Wyithe, J. S. B., Schaye, J. & Duffy, A. R. The accretion history of dark matter haloes. II. The connections with the mass power spectrum and the density profile. Mon. Not. R. Astron. Soc. 450, 1521–1537 (2015).

    ADS  Google Scholar 

  84. 84.

    Correa, C. A., Wyithe, J. S. B., Schaye, J. & Duffy, A. R. The accretion history of dark matter haloes. III. A physical model for the concentration-mass relation. Mon. Not. R. Astron. Soc. 452, 1217–1232 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. W.J.C. acknowledges support from the UK Science and Technology Facilities Council (STFC) and UK Space Agency. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant agreement number DNRF106). This research was partially conducted during the Exostar19 programme at the Kavli Institute for Theoretical Physics at UC Santa Barbara, which was supported in part by the National Science Foundation under grant number NSF PHY-1748958. A.M., J.T.M., F.V. and J.M. acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, grant agreement number 772293). F.V. acknowledges the support of a Fellowship from the Center for Cosmology and AstroParticle Physics at The Ohio State University. W.H.B. and M.B.N. acknowledge support from the UK Space Agency. K.J.B. is supported by the National Science Foundation under award AST-1903828. M.B.N. acknowledges partial support from the NYU Abu Dhabi Center for Space Science under grant number G1502. A.M.S. is partially supported by the Spanish Government (ESP2017-82674-R) and Generalitat de Catalunya (2017-SGR-1131). T.M. acknowledges financial support from Belspo for contract PRODEX PLATO. H.K. acknowledges support from the European Social Fund via the Lithuanian Science Council grant number 09.3.3-LMT-K-712-01-0103. S.B. acknowledges support from NSF grant AST-1514676 and NASA grant 80NSSC19K0374. V.S.A. acknowledges support from the Independent Research Fund Denmark (research grant 7027-00096B). D.H. acknowledges support by the National Aeronautics and Space Administration (80NSSC18K1585, 80NSSC19K0379) awarded through the TESS Guest Investigator Program and by the National Science Foundation (AST-1717000). T.S.M. acknowledges support from a visiting fellowship at the Max Planck Institute for Solar System Research. Computational resources were provided through XSEDE allocation TG-AST090107. D.L.B. acknowledges support from NASA under grant NNX16AB76G. T.L.C. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 792848 (PULSATION). This work was supported by FCT/MCTES through national funds (PIDDAC) by means of grant UID/FIS/04434/2019. K.J.B., S.H., J.S.K. and N.T. are supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 338251 (StellarAges). E.C. is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 664931. L.G.-C. acknowledges support from the MINECO FPI-SO doctoral research project SEV-2015-0548-17-2 and predoctoral contract BES-2017-082610. P.G. is supported by the German space agency (Deutsches Zentrum für Luft- und Raumfahrt) under PLATO data grant 50OO1501. R.K. acknowledges support from the UK Science and Technology Facilities Council (STFC), under consolidated grant ST/L000733/1. M.S.L. is supported by the Carlsberg Foundation (grant agreement number CF17-076). Z.C.O., S.O. and M.Y. acknowledge support from the Scientific and Technological Research Council of Turkey (TÜBİTAK:118F352). S.M. acknowledges support from the Spanish ministry through the Ramon y Cajal fellowship number RYC-2015-17697. T.S.R. acknowledges financial support from Premiale 2015 MITiC (PI B. Garilli). R.Sz. acknowledges the support from NKFIH grant project No. K-115709, and the Lendület program of the Hungarian Academy of Science (project number 2018-7/2019). J.T. acknowledges support was provided by NASA through the NASA Hubble Fellowship grant number 51424 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This work was supported by FEDER through COMPETE2020 (POCI-01-0145-FEDER-030389. A.M.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 749962 (project THOT). A.M. and P.R. acknowledge the support of the Government of India, Department of Atomic Energy, under Project No. 12-R&D-TFR-6.04-0600. K.J.B. is an NSF Astronomy and Astrophysics Postdoctoral Fellow and DIRAC Fellow.

Author information

Affiliations

Authors

Contributions

W.J.C. led the project, with help from A.M.S., A.M., S.B. and W.H.B. W.J.C., H.K., W.H.B., H.M.A., T.R.B., R.A.G., D.H., K.J.B., D.L.B., O.B., L.B., T.L.C., E.C., L.G.-C., G.R.D., Y.P.E., P.G., H.G., O.J.H., A.H., S.H., R.H., A.J., R.K., J.S.K., T.K., M.S.L., S.M., B.M., A.M.B., M.B.N., I.W.R., H.S., R.S., N.T., A.E.L.T., M.V. and T.M.W. worked on extracting mode parameters from the TESS data. R.H. and M.N.L. oversaw production of the TESS lightcurves for the asteroseismic analysis. A.M.S., A.M., S.B., W.H.B., A.S., K.V., J.R.M., V.S.A., A.M., P.R., Y.B., J.O., P.B., M.B., K.J.B., D.B., Z.C.O., M.P.D.M., Z.G., S.H., J.M., S.O., B.M.R., T.S.R., D.S., J.T., W.E.v.R., A.W. and M.Y. worked on modelling \(\nu\) Indi. T.M. performed the spectroscopic analysis of the archival HARPS and FEROS data on \(\nu\) Indi. M.B. assessed the impact of NLTE on the spectroscopic analysis. R.E. performed the chromospheric activity analysis of \(\nu\) Indi. J.T.M. performed the kinematics analysis and comparison of the chemistry of \(\nu\) Indi with samples of Milky Way stars, and F.V. computed the theoretical prior based on hierarchical cosmological models of structure formation. D.H., K.G.S. and B.S. provided estimates of the luminosity of \(\nu\) Indi. J.C.-D., H.K., W.J.C., T.R.B., S.D.K. and S.B. are key architects of TASC (members of its board), while G.R.R., J.M.J., D.W.L., R.K.V. and J.N.W. are key architects of the TESS Mission. W.J.C., D.H., T.A., A.M.S., O.C., R.A.G. and T.S.M. oversaw the TASC working groups on solar-like oscillators and, with M.S. and T.L.C., oversaw the selection of short-cadence targets for asteroseismic studies of solar-like oscillators with TESS, which included ensuring \(\nu\) Indi was included on the list (and hence received the TESS short-cadence data needed to make this study possible). All authors have contributed to the interpretation of the data and the results, and to discussion and comments on the paper.

Corresponding author

Correspondence to William J. Chaplin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 An échelle diagram showing the observed frequencies (in grey) and the best-fitting model frequencies (coloured symbols).

The diagram was made by dividing the spectrum into segments of length equal to the average frequency separation \(\Delta \nu\) between consecutive overtones, which were then stacked in ascending order, so one plots \(\nu\) versus (\(\nu\) mod \(\Delta \nu\)). The \(l=0\) (radial) modes are plotted with square symbols, the \(l=1\) (dipole) modes are plotted with circular symbols, and the \(l=2\) (quadrupole) modes are plotted with triangular symbols. Symbol sizes reflect the relative visibilities of the different modes, with a suitable correction included to reflect the impact of mixing on the mode inertia. All model frequencies are plotted, irrespective of whether we were able to report a reliable observed frequency for them.

Extended Data Fig. 2 Inference on the epoch of the Gaia–Enceladus merger.

The dashed black line shows the measured cumulative posterior on \(\nu\) Indi. The dot-dashed black line is the estimated cumulative prior probability for the merger assuming a virial mass of the Gaia–Enceladus dark-matter halo of \({M}_{{\rm{Enc}}}=1\times 1{0}^{10}\ {{\rm{M}}}_{\odot }\). The solid black line shows the cumulative probability for the merger, dependent on the estimated age of \(\nu\) Indi and the assumed 2-Gyr-wide merger duration; while the solid red line shows the cumulative probability for the merger also taking into account the merger prior (different in each panel, since this depends on \({M}_{{\rm{Enc}}}\)).

Extended Data Fig. 3 As for Extended Data Fig. 2, but now assuming a virial mass of the Gaia–Enceladus dark-matter halo of 1 × 1011 M.

We note the measured cumulative posterior on \(\nu\) Indi (dashed black line) and the cumulative probability for the merger (dependent on the estimated age of \(\nu\) Indi and the assumed 2-Gyr-wide merger duration; black line) are the same as in Extended Data Fig. 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaplin, W.J., Serenelli, A.M., Miglio, A. et al. Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. Nat Astron 4, 382–389 (2020). https://doi.org/10.1038/s41550-019-0975-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing