Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations

Abstract

The evolution of cosmic structures, the formation and growth of the first black holes and the connection to their baryonic environment are key unsolved problems in astrophysics. The X-ray Athena mission and the gravitational-wave Laser Interferometer Space Antenna (LISA) offer independent and complementary angles on these problems. We show that up to about 10 black hole binaries in the mass range of approximately 105 to 108 solar masses discovered by LISA at redshift below about 3.5 could be detected by Athena in an exposure time up to 100 ks, if prompt X-ray emission of 1–10% of the Eddington luminosity is present. Likewise, if any LISA-detected extreme-mass-ratio inspirals occur in accretion disks, Athena can detect associated electromagnetic emission out to a redshift of about 1. Finally, warned by LISA, Athena can point in advance and stare at stellar-mass binary black hole mergers at redshift less than about 0.1. These science opportunities emphasize the vast discovery space of simultaneous observations from the two observatories, which would be missed if they were operated in different epochs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Feasibility of joint GW/X-ray observations of MBHB mergers in the mass–redshift plane.
Fig. 2: Feasibility of joint GW/X-ray observations of a stellar-mass compact object spiralling into a massive companion.
Fig. 3: The discovery space in the total mass–redshift plane of joint GW/X-ray observations of stellar-mass binary black holes.

Data availability

The source data used in the figures are available on request from the corresponding author.

References

  1. 1.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  Google Scholar 

  2. 2.

    Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017).

    ADS  Google Scholar 

  3. 3.

    Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    ADS  Google Scholar 

  4. 4.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    ADS  Google Scholar 

  5. 5.

    Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    ADS  Google Scholar 

  6. 6.

    Mooley, K. P. et al. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561, 355–359 (2018).

    ADS  Google Scholar 

  7. 7.

    Ghirlanda, G. et al. Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363, 968–971 (2019).

    ADS  Google Scholar 

  8. 8.

    Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  9. 9.

    Klein, A. et al. Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D. 93, 024003 (2016).

    ADS  Google Scholar 

  10. 10.

    Aird, J. et al. The hot and energetic Universe: the formation and growth of the earliest supermassive black holes. Preprint at https://arxiv.org/abs/1306.2325 (2013).

  11. 11.

    Nandra, K. et al. The hot and energetic Universe: a White Paper presenting the science theme motivating the Athena+ mission. Preprint at https://arxiv.org/abs/1306.2307 (2013).

  12. 12.

    LSST Science Collaboration et al. LSST Science Book, Version 2.0. Preprint at https://arxiv.org/abs/0912.0201 (2009).

  13. 13.

    Dewdney, P. E., Hall, P. J., Schilizzi, R. T. & Lazio, T. J. L. W. The Square Kilometre Array. Proc. IEEE 97, 1482–1496 (2009).

    ADS  Google Scholar 

  14. 14.

    Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).

    ADS  Google Scholar 

  15. 15.

    Sesana, A., Haardt, F., Madau, P. & Volonteri, M. Low-frequency gravitational radiation from coalescing massive black hole binaries in hierarchical cosmologies. Astrophys. J. 611, 623–632 (2004).

    ADS  MATH  Google Scholar 

  16. 16.

    Barack, L. & Cutler, C. LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D. 69, 082005 (2004).

    ADS  Google Scholar 

  17. 17.

    Amaro-Seoane, P. et al. Topical Review: Intermediate and extreme mass-ratio inspirals: astrophysics, science applications and detection using LISA. Class. Quantum Gravity 24, R113–R169 (2007).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Sesana, A. Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett. 116, 231102 (2016).

    ADS  Google Scholar 

  19. 19.

    Armitage, P. J. & Natarajan, P. Accretion during the merger of supermassive black holes. Astrophys. J. Lett. 567, L9–L12 (2002).

    ADS  Google Scholar 

  20. 20.

    Milosavljević, M. & Phinney, E. S. The afterglow of massive black hole coalescence. Astrophys. J. Lett. 622, L93–L96 (2005).

    ADS  Google Scholar 

  21. 21.

    Chang, P., Strubbe, L. E., Menou, K. & Quataert, E. Fossil gas and the electromagnetic precursor of supermassive binary black hole mergers. Mon. Not. R. Astron. Soc. 407, 2007–2016 (2010).

    ADS  Google Scholar 

  22. 22.

    Palenzuela, C., Lehner, L. & Liebling, S. L. Dual jets from binary black holes. Science 329, 927–930 (2010).

    ADS  Google Scholar 

  23. 23.

    Bode, T., Haas, R., Bogdanović, T., Laguna, P. & Shoemaker, D. Relativistic mergers of supermassive black holes and their electromagnetic signatures. Astrophys. J. 715, 1117–1131 (2010).

    ADS  Google Scholar 

  24. 24.

    Gold, R. et al. Accretion disks around binary black holes of unequal mass: general relativistic MHD simulations of postdecoupling and merger. Phys. Rev. D. 90, 104030 (2014).

    ADS  Google Scholar 

  25. 25.

    Cerioli, A., Lodato, G. & Price, D. J. Gas squeezing during the merger of a supermassive black hole binary. Mon. Not. R. Astron. Soc. 457, 939–948 (2016).

    ADS  Google Scholar 

  26. 26.

    Tang, Y., Haiman, Z. & MacFadyen, A. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band. Mon. Not. R. Astron. Soc. 476, 2249–2257 (2018).

    ADS  Google Scholar 

  27. 27.

    d’Ascoli, S. et al. Electromagnetic emission from supermassive binary black holes approaching merger. Astrophys. J. 865, 140 (2018).

    ADS  Google Scholar 

  28. 28.

    Rau, A. et al. The hot and energetic Universe: the Wide Field Imager (WFI) for Athena+. Preprint at https://arxiv.org/abs/1308.6785 (2013).

  29. 29.

    Barausse, E. The evolution of massive black holes and their spins in their galactic hosts. Mon. Not. R. Astron. Soc. 423, 2533–2557 (2012).

    ADS  Google Scholar 

  30. 30.

    Santamaría, L. et al. Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for nonprecessing black hole binaries. Phys. Rev. D. 82, 064016 (2010).

    ADS  Google Scholar 

  31. 31.

    Reeves, J. N. & Turner, M. J. L. X-ray spectra of a large sample of quasars with ASCA. Mon. Not. R. Astron. Soc. 316, 234–248 (2000).

    ADS  Google Scholar 

  32. 32.

    Lusso, E. et al. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. Mon. Not. R. Astron. Soc. 425, 623–640 (2012).

    ADS  Google Scholar 

  33. 33.

    Barnes, J. E. & Hernquist, L. Transformations of galaxies. II. Gasdynamics in merging disk galaxies. Astrophys. J. 471, 115 (1996).

    ADS  Google Scholar 

  34. 34.

    Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. 175, 356–389 (2008).

    ADS  Google Scholar 

  35. 35.

    Shankar, F., Weinberg, D. H. & Miralda-Escudé, J. Accretion-driven evolution of black holes: Eddington ratios, duty cycles and active galaxy fractions. Mon. Not. R. Astron. Soc. 428, 421–446 (2013).

    ADS  Google Scholar 

  36. 36.

    Rossi, E. M., Lodato, G., Armitage, P. J., Pringle, J. E. & King, A. R. Black hole mergers: the first light. Mon. Not. R. Astron. Soc. 401, 2021–2035 (2010).

    ADS  Google Scholar 

  37. 37.

    Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    ADS  Google Scholar 

  38. 38.

    Babak, S. et al. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D. 95, 103012 (2017).

    ADS  Google Scholar 

  39. 39.

    Gair, J. R., Tang, C. & Volonteri, M. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D. 81, 104014 (2010).

    ADS  Google Scholar 

  40. 40.

    Levin, Y. Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band. Mon. Not. R. Astron. Soc. 374, 515–524 (2007).

    ADS  Google Scholar 

  41. 41.

    Yunes, N., Kocsis, B., Loeb, A. & Haiman, Z. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals. Phys. Rev. Lett. 107, 171103 (2011).

    ADS  Google Scholar 

  42. 42.

    Barausse, E., Cardoso, V. & Pani, P. Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D. 89, 104059 (2014).

    ADS  Google Scholar 

  43. 43.

    McKernan, B., Ford, K. E. S., Kocsis, B. & Haiman, Z. Ripple effects and oscillations in the broad Fe Kα line as a probe of massive black hole mergers. Mon. Not. R. Astron. Soc. 432, 1468–1482 (2013).

    ADS  Google Scholar 

  44. 44.

    Reines, A. E., Greene, J. E. & Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 775, 116 (2013).

    ADS  Google Scholar 

  45. 45.

    Del Pozzo, W., Sesana, A. & Klein, A. Stellar binary black holes in the LISA band: a new class of standard sirens. Mon. Not. R. Astron. Soc. 475, 3485–3492 (2018).

    ADS  Google Scholar 

  46. 46.

    Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Gravity 27, 194002 (2010).

    ADS  Google Scholar 

  47. 47.

    Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).

    ADS  Google Scholar 

  48. 48.

    Kawai, N. et al. X-ray upper limits of GW150914 with MAXI. Publ. Astron. Soc. Jpn 69, 84 (2017).

    ADS  Google Scholar 

  49. 49.

    Michaely, E. & Perets, H. B. Supernova and prompt gravitational-wave precursors to LIGO gravitational-wave sources and short GRBs. Astrophys. J. Lett. 855, L12 (2018).

    ADS  Google Scholar 

  50. 50.

    Perna, R., Lazzati, D. & Giacomazzo, B. Short gamma-ray bursts from the merger of two black holes. Astrophys. J. Lett. 821, L18 (2016).

    ADS  Google Scholar 

  51. 51.

    de Mink, S. E. & King, A. Electromagnetic signals following stellar-mass black hole mergers. Astrophys. J. Lett. 839, L7 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

S.McG. acknowledges the support of the UK Science and Technology Facilities Council (STFC); A.S. is supported by a University Research Fellowship of the Royal Society; A.V. acknowledges support from STFC, UK Space Agency, the Royal Society and the Wolfson Foundation. We thank E. Barausse for providing the MBHB population models discussed in the text.

Author information

Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper.

Corresponding author

Correspondence to Sean McGee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Monica Colpi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGee, S., Sesana, A. & Vecchio, A. Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nat Astron 4, 26–31 (2020). https://doi.org/10.1038/s41550-019-0969-7

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing