Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The great isotopic dichotomy of the early Solar System

Abstract

The isotopic composition of meteorites and terrestrial planets holds important clues about the earliest history of the Solar System and the processes of planet formation. Recent work has shown that meteorites exhibit a fundamental isotopic dichotomy between non-carbonaceous (NC) and carbonaceous (CC) groups, which most likely represent material from the inner and outer Solar System, respectively. Here we review the isotopic evidence for this NC–CC dichotomy, discuss its origin and highlight the far-reaching implications for the dynamics of the solar protoplanetary disk. The NC–CC dichotomy combined with the chronology of meteorite parent-body accretion mandate an early and prolonged spatial separation of inner (NC) and outer (CC) disk reservoirs, lasting between ~1 and ~4 Myr after Solar System formation. This is most easily reconciled with the early and rapid growth of Jupiter’s core, inhibiting substantial exchange of material from inside and outside its orbit. The growth and migration of Jupiter also led to the later implantation of CC bodies into the inner Solar System and, therefore, can explain the co-occurrence of NC and CC bodies in the asteroid belt, and the delivery of volatile and water-rich CC bodies to the terrestrial planets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NC–CC meteorite dichotomy inferred from isotopic signatures of bulk meteorites.
Fig. 2: Molybdenum isotope dichotomy of meteorites.
Fig. 3: Summary of isotopic ages discussed in the text, shown as age intervals relative to CAI formation.
Fig. 4: Accretion timescales of meteorite parent bodies as inferred from isotopic ages of meteorites.
Fig. 5: Evolution of the solar accretion disk.

References

  1. 1.

    Brogan, C. L. et al. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015).

    ADS  Google Scholar 

  2. 2.

    Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    ADS  Google Scholar 

  3. 3.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    ADS  Google Scholar 

  4. 4.

    Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).

    ADS  Google Scholar 

  5. 5.

    Pape, J., Mezger, K., Bouvier, A. S. & Baumgartner, L. P. Time and duration of chondrule formation: constraints from 26Al-26Mg ages of individual chondrules. Geochim. Cosmochim. Acta 244, 416–436 (2019).

    ADS  Google Scholar 

  6. 6.

    Budde, G. et al. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016).

    ADS  Google Scholar 

  7. 7.

    Van Kooten, E. M. M. E. et al. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Natl Acad. Sci. USA 113, 2011–2016 (2016).

    ADS  Google Scholar 

  8. 8.

    Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    ADS  Google Scholar 

  9. 9.

    Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    ADS  Google Scholar 

  10. 10.

    Zinner, E. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 181–213 (Elsevier, 2014).

  11. 11.

    Dauphas, N. & Schauble, E. A. Mass fractionation laws, mass-independent effect, and isotopic anomalies. Ann. Rev. Earth Planet. Sci. 44, 709–783 (2016).

    ADS  Google Scholar 

  12. 12.

    McKeegan, K. D. et al. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011).

    ADS  Google Scholar 

  13. 13.

    Nanne, J. A. M., Nimmo, F., Cuzzi, J. N. & Kleine, T. Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019).

    ADS  Google Scholar 

  14. 14.

    Regelous, M., Elliott, T. & Coath, C. D. Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272, 330–338 (2008).

    ADS  Google Scholar 

  15. 15.

    Poole, G. M., Rehkämper, M., Coles, B. J., Goldberg, T. & Smith, C. L. Nucleosynthetic molybdenum isotope anomalies in iron meteorites — new evidence for thermal processing of solar nebula material. Earth Planet. Sci. Lett. 473, 215–226 (2017).

    ADS  Google Scholar 

  16. 16.

    Worsham, E. A., Bermingham, K. R. & Walker, R. J. Characterizing cosmochemical materials with genetic affinities to the Earth: genetic and chronological diversity within the IAB iron meteorite complex. Earth Planet. Sci. Lett. 467, 157–166 (2017).

    ADS  Google Scholar 

  17. 17.

    Burkhardt, C. et al. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390–400 (2011).

    ADS  Google Scholar 

  18. 18.

    Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    ADS  Google Scholar 

  19. 19.

    Amelin, Y. et al. U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343–350 (2010).

    ADS  Google Scholar 

  20. 20.

    Kleine, T. & Wadhwa, M. in Planetesimals: Early Differentiation and Consequences for Planets Cambridge Planetary Science (eds Weiss, B. P. & Elkins-Tanton, L. T.) 224–245 (Cambridge Univ. Press, 2017).

  21. 21.

    Hevey, P. J. & Sanders, I. S. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41, 95–106 (2006).

    ADS  Google Scholar 

  22. 22.

    Scott, E. R. D. Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta 36, 1205–1236 (1972).

    ADS  Google Scholar 

  23. 23.

    Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006).

    ADS  Google Scholar 

  24. 24.

    Bizzarro, M., Baker, J. A., Haack, H. & Lundgaard, K. L. Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophys. J. 632, L41–L44 (2005).

    ADS  Google Scholar 

  25. 25.

    Kleine, T., Hans, U., Irving, A. J. & Bourdon, B. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim. Cosmochim. Acta 84, 186–203 (2012).

    ADS  Google Scholar 

  26. 26.

    Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B. & Kleine, T. Hf–W chronology of the eucrite parent body. Geochim. Cosmochim. Acta 156, 106–121 (2015).

    ADS  Google Scholar 

  27. 27.

    Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T. & Bizzarro, M. Early accretion of protoplanets inferred from a reduced inner Solar System 26Al inventory. Earth Planet. Sci. Lett. 420, 45–54 (2015).

    ADS  Google Scholar 

  28. 28.

    van Kooten, E. M. M. E., Schiller, M. & Bizzarro, M. Magnesium and chromium isotope evidence for initial melting by radioactive decay of 26Al and late stage impact-melting of the ureilite parent body. Geochim. Cosmochim. Acta 208, 1–23 (2017).

    ADS  Google Scholar 

  29. 29.

    Budde, G., Kruijer, T. S. & Kleine, T. Hf–W chronology of CR chondrites: implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochim. Cosmochim. Acta 222, 284–304 (2018).

    ADS  Google Scholar 

  30. 30.

    Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C. & Wieler, R. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett. 403, 317–327 (2014).

    ADS  Google Scholar 

  31. 31.

    Budde, G., Kruijer, T. S., Fischer-Gödde, M., Irving, A. J. & Kleine, T. Planetesimal differentiation revealed by the Hf–W systematics of ureilites. Earth Planet. Sci. Lett. 430, 316–325 (2015).

    ADS  Google Scholar 

  32. 32.

    Krot, A. N., Connolly, H. C. Jr & Russell, S. S. (eds) Chondrules: Records of Protoplanetary Disk Processes (Cambridge Univ. Press, 2018).

  33. 33.

    Alexander, C. M. O., Grossman, J. N., Ebel, D. S. & Ciesla, F. J. The formation conditions of chondrules and chondrites. Science 320, 1617–1619 (2008).

    ADS  Google Scholar 

  34. 34.

    Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C. & Metzler, K. Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl Acad. Sci. USA 113, 2886–2891 (2016).

    ADS  Google Scholar 

  35. 35.

    Johnson, B. C., Minton, D. A., Melosh, H. J. & Zuber, M. T. Impact jetting as the origin of chondrules. Nature 517, 339–341 (2015).

    ADS  Google Scholar 

  36. 36.

    Kita, N. T. & Ushikubo, T. Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47, 1108–1119 (2012).

    ADS  Google Scholar 

  37. 37.

    Nagashima, K., Krot, A. N. & Komatsu, M. 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 303–319 (2017).

    ADS  Google Scholar 

  38. 38.

    Villeneuve, J., Chaussidon, M. & Libourel, G. Homogeneous distribution of Al-26 in the Solar System from the Mg isotopic composition of chondrules. Science 325, 985–988 (2009).

    ADS  Google Scholar 

  39. 39.

    Schrader, D. L. et al. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201, 275–302 (2017).

    ADS  Google Scholar 

  40. 40.

    Amelin, Y. & Krot, A. N. Pb isotopic ages of the Allende chondrules. Meteorit. Planet. Sci. 42, 1321–1335 (2007).

    ADS  Google Scholar 

  41. 41.

    Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002).

    ADS  Google Scholar 

  42. 42.

    Connelly, J., Amelin, Y., Krot, A. N. & Bizzarro, M. Chronology of the Solar System’s oldest solids. Astrophys. J. 675, L121–L124 (2008).

    ADS  Google Scholar 

  43. 43.

    Connelly, J. N. & Bizzarro, M. Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chem. Geol. 259, 143–151 (2009).

    ADS  Google Scholar 

  44. 44.

    Bollard, J., Connelly, J. N. & Bizzarro, M. Pb–Pb dating of individual chondrules from the CBa chondrite Gujba: assessment of the impact plume formation model. Meteorit. Planet. Sci. 50, 1197–1216 (2015).

    ADS  Google Scholar 

  45. 45.

    Krot, A. N., Amelin, Y., Cassen, P. & Meibom, A. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989–992 (2005).

    ADS  Google Scholar 

  46. 46.

    Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N. & Levison, H. F. Timing of the formation and migration of giant planets as constrained by CB chondrites. Sci. Adv. 2, e1601658 (2016).

    ADS  Google Scholar 

  47. 47.

    Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).

    ADS  Google Scholar 

  48. 48.

    Bollard, J. et al. Combined U-corrected Pb–Pb dating and 26Al–26Mg systematics of individual chondrules — evidence for a reduced initial abundance of 26Al amongst inner Solar System chondrules. Geochim. Cosmochim. Acta 260, 62–83 (2019).

    ADS  Google Scholar 

  49. 49.

    Sugiura, N. & Fujiya, W. Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci. 49, 772–787 (2014).

    ADS  Google Scholar 

  50. 50.

    Doyle, P. M. et al. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 7444 (2015).

    ADS  Google Scholar 

  51. 51.

    Jogo, K. et al. Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: constraints on the accretion ages of chondritic asteroids. Geochim. Cosmochim. Acta 199, 58–74 (2017).

    ADS  Google Scholar 

  52. 52.

    Fujiya, W., Sugiura, N., Hotta, H., Ichimura, K. & Sano, Y. Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nat. Commun. 3, 627 (2012).

    ADS  Google Scholar 

  53. 53.

    Brennecka, G. A., Borg, L. E. & Wadhwa, M. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. Proc. Natl Acad. Sci. USA 110, 17241–17246 (2013).

    ADS  Google Scholar 

  54. 54.

    Jacobsen, B. et al. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353–364 (2008).

    ADS  Google Scholar 

  55. 55.

    MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S. & Davis, A. M. Well-resolved variations in the formation ages for Ca–Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett. 331–332, 43–54 (2012).

    ADS  Google Scholar 

  56. 56.

    Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B. & Kleine, T. Elemental and isotopic variability in Solar System materials by mixing and processing of distinct molecular cloud reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019).

    ADS  Google Scholar 

  57. 57.

    Desch, S. J., Kalyaan, A. & O’D. Alexander, C. M. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    ADS  Google Scholar 

  58. 58.

    Pignatale, F. C., Charnoz, S., Chaussidon, M. & Jacquet, E. Making the planetary material diversity during the early assembling of the Solar System. Astrophys. J. Lett. 867, L23 (2018).

    ADS  Google Scholar 

  59. 59.

    Yang, L. & Ciesla, F. J. The effects of disk building on the distributions of refractory materials in the solar nebula. Meteorit. Planet. Sci. 47, 99–119 (2012).

    ADS  Google Scholar 

  60. 60.

    Birnstiel, T., Dullemond, C. P. & Pinilla, P. Lopsided dust rings in transition disks. Astron. Astrophys. 550, L8 (2013).

    ADS  MATH  Google Scholar 

  61. 61.

    Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).

    ADS  Google Scholar 

  62. 62.

    Lambrechts, M., Johansen, A. & Morbidelli, A. Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014).

    ADS  Google Scholar 

  63. 63.

    Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    ADS  Google Scholar 

  64. 64.

    Weber, P., Benítez-Llambay, P., Gressel, O., Krapp, L. & Pessah, M. E. Characterizing the variable dust permeability of planet-induced gaps. Astrophys. J. 854, 153 (2018).

    ADS  Google Scholar 

  65. 65.

    Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018).

    ADS  Google Scholar 

  66. 66.

    Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    ADS  Google Scholar 

  67. 67.

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS  Google Scholar 

  68. 68.

    Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS  Google Scholar 

  69. 69.

    Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).

    ADS  Google Scholar 

  70. 70.

    Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).

    ADS  Google Scholar 

  71. 71.

    Levison, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).

    ADS  Google Scholar 

  72. 72.

    Sarafian, A. R. et al. Angrite meteorites record the onset and flux of water to the inner Solar System. Geochim. Cosmochim. Acta 212, 156–166 (2017).

    ADS  Google Scholar 

  73. 73.

    Sarafian, A. R., Nielsen, S. G., Marschall, H. R., McCubbin, F. M. & Monteleone, B. D. Early accretion of water in the inner Solar System from a carbonaceous chondrite–like source. Science 346, 623–626 (2014).

    ADS  Google Scholar 

  74. 74.

    Amelin, Y. U–Pb ages of angrites. Geochim. Cosmochim. Acta 72, 221–232 (2008).

    ADS  Google Scholar 

  75. 75.

    Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).

    ADS  Google Scholar 

  76. 76.

    Alibert, Y. et al. The formation of Jupiter by hybrid pebble–planetesimal accretion. Nat. Astron. 2, 873–877 (2018).

    ADS  Google Scholar 

  77. 77.

    Fischer, R. A., Nimmo, F. & O’Brien, D. P. Radial mixing and Ru–Mo isotope systematics under different accretion scenarios. Earth Planet. Sci. Lett. 482, 105–114 (2018).

    ADS  Google Scholar 

  78. 78.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS  Google Scholar 

  79. 79.

    Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    ADS  Google Scholar 

  80. 80.

    Alexander, C. M. O. D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    ADS  Google Scholar 

  81. 81.

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    ADS  Google Scholar 

  82. 82.

    Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    ADS  Google Scholar 

  83. 83.

    Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    ADS  Google Scholar 

  84. 84.

    Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Annu. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    ADS  Google Scholar 

  85. 85.

    Rudge, J. F., Kleine, T. & Bourdon, B. Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci. 3, 439–443 (2010).

    ADS  Google Scholar 

  86. 86.

    Deguen, R., Landeau, M. & Olson, P. Turbulent metal-silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).

    ADS  Google Scholar 

  87. 87.

    Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    ADS  Google Scholar 

  88. 88.

    Nimmo, F. & Kleine, T. How rapidly did Mars accrete? Uncertainties in the Hf–W timing of core formation. Icarus 191, 497–504 (2007).

    ADS  Google Scholar 

  89. 89.

    Brasser, R., Dauphas, N. & Mojzsis, S. J. Jupiter’s influence on the building blocks of Mars and Earth. Geophys. Res. Lett. 45, 5908–5917 (2018).

    ADS  Google Scholar 

  90. 90.

    Brennecka, G. A. et al. 238U/235U variations in meteorites: extant 247Cm and implications for Pb–Pb dating. Science 327, 449–451 (2010).

    ADS  Google Scholar 

  91. 91.

    MacPherson, G. J. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 1–47 (Pergamon, 2007).

  92. 92.

    Burkhardt, C. et al. Hf–W mineral isochron for Ca, Al-rich inclusions: age of the Solar System and the timing of core formation in planetesimals. Geochim. Cosmochim. Acta 72, 6177–6197 (2008).

    ADS  Google Scholar 

  93. 93.

    Kööp, L. et al. A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta 189, 70–95 (2016).

    ADS  Google Scholar 

  94. 94.

    Sahijpal, S. & Goswami, J. N. Refractory phases in primitive meteorites devoid of 26Al and 41Ca: representative samples of first Solar System solids? Astrophys. J. 509, L137–L140 (1998).

    ADS  Google Scholar 

  95. 95.

    Wood, J. A. Meteoritic evidence for the infall of large interstellar dust aggregates during the formation of the Solar System. Astrophys. J. 503, L101–L104 (1998).

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Budde and C. Burkhardt for many discussions about the NC–CC dichotomy, and for the collaborative effort that led to the identification of the dichotomy and for the development of some of the ideas presented in this Review. We thank G. Brennecka, J. Cuzzi, A. Morbidelli, F. Nimmo and E. A. Worsham for discussions. This study was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA2734. Funding from the Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory (grant 17-ERD-001 to L.E.B. and grant 20-ERD-001 to T.S.K.), from the European Research Council (ERC Consolidator grant number 616564 ‘ISOCORE’ to T.K.) and from the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center TRR 170 (subproject B3) is gratefully acknowledged. This is TRR publication no. 81.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Kruijer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Nathan Kaib and Edward Scott for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kruijer, T.S., Kleine, T. & Borg, L.E. The great isotopic dichotomy of the early Solar System. Nat Astron 4, 32–40 (2020). https://doi.org/10.1038/s41550-019-0959-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing