Extended Data Fig. 4: Isotopic dichotomy between carbonaceous (CC) and non-carbonaceous (NC) meteorites in ε100Mo-ε92Mo and ε110Pd-ε102Pd. | Nature Astronomy

Extended Data Fig. 4: Isotopic dichotomy between carbonaceous (CC) and non-carbonaceous (NC) meteorites in ε100Mo-ε92Mo and ε110Pd-ε102Pd.

From: The origin of s-process isotope heterogeneity in the solar protoplanetary disk

Extended Data Fig. 4

(a) The dichotomy reported in Mo is characterised by an enrichment in ε92Mo for the CC meteorites (blue) relative to the NC group (grey). A small addition of supernova derived material to the stardust and/or ISM dust fraction coupled with thermal processing of ISM dust mantles can explain this offset. (b) Only the IVB irons of the two analysed CC-type iron meteorite groups (IID and IVB) show the negative shift in ε102Pd predicted by the isotopic dichotomy. Given the typical uncertainty on ε102Pd for individual meteorites (~ 1 ε; Supplementary Table 1) due to the large Ru correction on 102Pd (Ref. 62), it is barely possible to resolve the expected effect. The dashed lines indicate a mixing line between an s-process endmember33 and the terrestrial composition. The blue dashed line represents a mixing line between an s-process endmember33 and the terrestrial composition with a 0.008% enrichment in the residual r-process component, estimated based on the Mo data. Mo data from Ref. 11,14 and Pd data from Table 1. Uncertainties on Pd data points reflect either the 2 standard error of the mean or the 2 standard deviation of the x-axis intercept of a regression against ε196Pt (See Table 1). Uncertainties on Mo data points reflect either the 2 standard error of the mean (data from Ref. 11) or the 95 % confidence interval (data from Ref. 14).

Back to article page