A comparison of inner Solar System volcanism


The volcanic landforms, eruptive sites and longevity of activity on Mercury and the Moon contrast substantially with those of Earth, Venus and Mars. Here, I synthesize global maps of volcanic and tectonic features for these five worlds and, from the collective records of volcanic activity in the inner Solar System, draw conclusions about the long-term behaviour of terrestrial planets in general. Mercury and the Moon differ from the larger planetary bodies in terms of not only size and composition (and so shorter periods of melt production) but also by their being affected by a horizontally compressive stress state arising from a reduction in planetary volume as they cooled. The phenomenon of global contraction also readily accounts for the dearth of widespread extensional tectonic structures on Mercury and the Moon. From this comparative analysis, the most promising extrasolar planets on which to focus future searches for evidence of active, radiogenically driven volcanism are probably the larger rocky bodies in a mature planetary system or those worlds in relatively young systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global distribution of major volcanic units and landforms on Mercury.
Fig. 2: Global distribution of major volcanic units and landforms on the Moon.
Fig. 3: Global distribution of major volcanic units and landforms on Earth.
Fig. 4: Global distribution of major volcanic units and landforms on Venus.
Fig. 5: Global distribution of major volcanic units and landforms on Mars.
Fig. 6: Schematic timeline of volcanic activity on the inner Solar System bodies.

planet images, NASA

Data availability

For Fig. 1 (Mercury), the smooth plains are from ref. 11, with known volcanic plains from ref. 16. Sites of explosive volcanism are from ref. 5, and the impact craters shown are taken from ref. 89. Extensional structures within Borealis Planitia are from ref. 90 and the remainder (including those within Caloris Planitia) are from ref. 91.

For Fig. 2 (the Moon), the lunar mare boundaries are a Lunar Reconnaissance Orbiter Camera Shapefile Product (http://wms.lroc.asu.edu/lroc/rdr_product_select). Sites of near-surface intrusion are the aggregated floor-fractured craters from ref. 25, the volcanoes shown are those subtle, large shields described by ref. 28 and sites of lunar pyroclastic volcanism are from ref. 23. The extensional structures are graben mapped by ref. 92; the impact basins are from the catalogue constructed by ref. 93.

For Fig. 3 (Earth), the plate boundaries (and types) are from the Environmental Systems Research Institute (ESRI) ArcGIS ‘Plate Lines and Plate Polygons’ layer package. The (abyssal and hadal) seafloor units shown are from ref. 94. Major volcanoes are from the ESRI ‘volcano.shp’ file. Hotspot point data and large igneous province polygons are from the University of Texas Institute for Geophysics website (www-udc.ig.utexas.edu/external/plates/data/LIPS/Data), based on data compiled by ref. 95. The major continental rift zones are from the NASA Digital Tectonic Activity Map. All geological units shown for Fig. 4 (Venus) are from ref. 46; volcanic units ‘psh’ (shield plains), ‘rp1’ (regional plains 1) and ‘rp2’ (regional plains 2) have been combined, and are shown with tectonic unit ‘rz’ (rift zones). Individual volcanoes are from the Brown University Volcano Catalog (available via ftp://pdsimage2.wr.usgs.gov/pub/pigpen/venus/Volcano) and coronae are from ref. 96. For Fig. 5 (Mars), volcanic units and extensional structures (‘Graben axis’) are from ref. 39. Volcanic units from that source have been combined as follows: ‘lAv’ (Late Amazonian volcanic unit), ‘lAvf’ (Late Amazonian volcanic field unit), ‘Av’ (Amazonian volcanic unit), ‘AHv’ (Amazonian and Hesperian volcanic unit), ‘Hv’ (Late Hesperian volcanic unit), ‘lHvf’ (Late Hesperian volcanic field unit), ‘eHv’ (Early Hesperian volcanic unit), ‘lNv’ (Late Noachian volcanic unit), ‘Ave’ (Amazonian volcanic edifice), ‘Hve’ (Hesperian volcanic edifice unit), ‘Nve’ (Noachian volcanic edifice unit), ‘lAa’ (Late Amazonian apron unit) and ‘Aa’ (Amazonian apron unit). Volcanic edifices are from the Integrated Database of Planetary Features composite catalogue (https://planetarydatabase.wordpress.com/category/mars), and the impact basins in the map are from the global database of ref. 97, to which I added the outlines for the Argyre and Hellas basins.


  1. 1.

    Solomon, S. C. et al. Return to Mercury: a global perspective on MESSENGER’s first Mercury flyby. Science 321, 59–62 (2008).

  2. 2.

    Head, J. W. et al. Volcanism on Mercury: evidence from the first MESSENGER flyby. Science 321, 69–72 (2008).

  3. 3.

    Kerber, L. et al. Explosive volcanic eruptions on Mercury: eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 285, 263–271 (2009).

  4. 4.

    Head, J. W. et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1856 (2011).

  5. 5.

    Jozwiak, L. M., Head, J. W. & Wilson, L. Explosive volcanism on Mercury: analysis of vent and deposit morphology and modes of eruption. Icarus 302, 191–212 (2018).

  6. 6.

    Kaltenegger, L., Henning, W. G. & Sasselov, D. D. Detecting volcanism on extrasolar planets. Astrophys. J. 140, 1370–1380 (2010).

  7. 7.

    Misra, A., Krissansen-Totton, J., Koehler, M. C. & Sholes, S. Transient sulfate aerosols as a signature of exoplanet volcanism. Astrobiology 15, 462–477 (2015).

  8. 8.

    Peale, S. J., Cassen, P. & Reynolds, R. T. Melting of Io by tidal dissipation. Science 203, 892–894 (1979).

  9. 9.

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

  10. 10.

    Strom, R. G., Trask, J. J. & Guest, J. E. Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975).

  11. 11.

    Denevi, B. W. et al. The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets 118, 891–907 (2013).

  12. 12.

    Murchie, S. L. et al. Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015).

  13. 13.

    Vander Kaaden, K. E. et al. Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the Mercurian surface: insights into the Mercurian mantle. Icarus 285, 155–168 (2017).

  14. 14.

    Whitten, J. L., Head, J. W., Denevi, B. W. & Solomon, S. C. Intercrater plains on Mercury: insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus 241, 97–113 (2014).

  15. 15.

    Davidson, J. & de Silva, S. in Encyclopedia of Volcanoes (eds Sigurdsson, H. et al.) 663–681 (Academic, 2000).

  16. 16.

    Byrne, P. K. et al. Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett. 43, 7408–7416 (2016).

  17. 17.

    Klimczak, C., Crane, K. T., Habermann, M. A. & Byrne, P. K. The spatial distribution of Mercury’s pyroclastic activity and the relation to lithospheric weaknesses. Icarus 315, 115–123 (2018).

  18. 18.

    Prockter, L. M. et al. Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science 329, 668–671 (2010).

  19. 19.

    Thomas, R. J., Rothery, D. A., Conway, S. J. & Anand, M. Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 41, 6084–6092 (2014).

  20. 20.

    Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

  21. 21.

    Head, J. W. & Wilson, L. Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992).

  22. 22.

    Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

  23. 23.

    Gaddis, L. R. et al. Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2003).

  24. 24.

    Thomas, R. J., Rothery, D. A., Conway, S. J. & Anand, M. Explosive volcanism in complex impact craters on Mercury and the Moon: influence of tectonic regime on depth of magmatic intrusion. Earth Planet. Sci. Lett. 431, 164–172 (2015).

  25. 25.

    Jozwiak, L. M., Head, J. W., Neumann, G. A. & Wilson, L. Observational constraints on the identification of shallow lunar magmatism: insights from floor-fractured craters. Icarus 283, 224–231 (2017).

  26. 26.

    Platz, T., Byrne, P. K., Massironi, M. & Hiesinger, H. Volcanism and tectonism across the inner Solar System: an overview. Geol. Soc. Spec. Publ. 401, 1–56 (2015).

  27. 27.

    Head, J. W. & Gifford, A. Lunar mare domes — classification and modes of origin. Moon Planet. 22, 235–258 (1980).

  28. 28.

    Spudis, P. D., McGovern, P. J. & Kiefer, W. S. Large shield volcanoes on the Moon. J. Geophys. Res. Planets 118, 1063–1081 (2013).

  29. 29.

    Terada, K., Anand, M., Sokol, A. K., Bischoff, A. & Sano, Y. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450, 849–852 (2007).

  30. 30.

    Morota, T. et al. Timing and characteristics of the latest mare eruption on the Moon. Earth Planet. Sci. Lett. 302, 255–266 (2011).

  31. 31.

    Braden, S. E. et al. Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat. Geosci. 7, 787–791 (2014).

  32. 32.

    Hiesinger, H. et al. in Recent Advances and Current Research Issues in Lunar Stratigraphy Vol. 477 (eds Ambrose, W. A. & Williams, D. A.) 1–51 (Geological Society of America, 2011).

  33. 33.

    O’Neil, J. & Carlson, R. W. Building Archean cratons from Hadean mafic crust. Science 355, 1199–1201 (2017).

  34. 34.

    Sleep, N. H. & Windley, B. F. Archean plate tectonics: constraints and inferences. J. Geol. 90, 363–379 (1982).

  35. 35.

    McKinnon, W. B., Zahnle, K. K., Ivanov, B. A. & Melosh, H. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 969–1014 (Univ. Arizona Press, 1997).

  36. 36.

    Philips, R. J. et al. Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15923–15948 (1992).

  37. 37.

    Arkani-Hamed, J. & Toksöz, M. N. Thermal evolution of Venus. Phys. Earth Planet. Int. 34, 232–250 (1984).

  38. 38.

    Smrekar, S. E. et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).

  39. 39.

    Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, scale 1:20,000,000 pamphlet (USGS, 2014); https://doi.org/10.3133/sim3292

  40. 40.

    Greeley, R. & Schneid, B. D. Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991).

  41. 41.

    Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005).

  42. 42.

    Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

  43. 43.

    Werner, S. C. The global Martian volcanic evolutionary history. Icarus 201, 44–68 (2009).

  44. 44.

    Hauber, E. et al. Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, L10201 (2011).

  45. 45.

    Vaucher, J. et al. The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204, 418–442 (2009).

  46. 46.

    Ivanov, M. A. & Head, J. W. The history of volcanism on Venus. Planet. Space Sci. 84, 66–92 (2013).

  47. 47.

    Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).

  48. 48.

    Global Volcanism Program Volcanoes of the World v. 4.6.6. (ed. Venzke, E.) (Smithsonian Institution, 2013).

  49. 49.

    Stofan, E. R. et al. Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J. Geophys. Res. 97, 13347–13378 (1992).

  50. 50.

    Plescia, J. B. Morphometric properties of Martian volcanoes. J. Geophys. Res. 109, E03003 (2004).

  51. 51.

    Brož, P., adek, O., Hauber, E. & Rossi, A. P. Scoria cones on Mars: detailed investigation of morphometry based on high-resolution digital elevation models. J. Geophys. Res. Planets 120, 1512–1527 (2015).

  52. 52.

    Bleacher, J. E. et al. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J. Geophys. Res. 112, E09005 (2007).

  53. 53.

    Michalski, J. R. & Bleacher, J. E. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature 502, 47–52 (2013).

  54. 54.

    Stevenson, D. J. Styles of mantle convection and their influence on planetary evolution. C. R. Geosci. 335, 99–11 (2003).

  55. 55.

    Ogawa, M. & Yanagisawa, T. Numerical models of Martian mantle evolution induced by magmatism and solid-state convection beneath stagnant lithosphere. J. Geophys. Res. 116, E08008 (2011).

  56. 56.

    Ogawa, M. Numerical models of Martian mantle evolution induced by magmatism and solid-state convection beneath stagnant lithosphere. J. Geophys. Res. Planets 119, 2317–2330 (2014).

  57. 57.

    Ogawa, M. Evolution of the interior of Mercury influenced by coupled magmatism–mantle convection system and heat flux from the core. J. Geophys. Res. Planets 121, 118–136 (2016).

  58. 58.

    Peplowski, P. N. et al. Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res. 117, E00L04 (2012).

  59. 59.

    Kiefer, W. S., Filiberto, J., Sandu, C. & Li, Q. The effects of mantle composition on the peridotite solidus: implications for the magmatic history of Mars. Geochim. Cosmochim. Ac. 162, 247–258 (2015).

  60. 60.

    Solomon, S. C. On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett. 5, 461–464 (1978).

  61. 61.

    Byrne, P. K. et al. Mercury’s global contraction much greater than earlier estimates. Nat. Geosci. 7, 301–307 (2014).

  62. 62.

    Banks, M. E. et al. Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter. J. Geophys. Res. 117, E00H11 (2012).

  63. 63.

    Watters, T. R. & Johnson, C. L. in Planetary Tectonics (eds Watters, T. R. & Schultz, R. A.) 121–182 (Cambridge Univ. Press, 2010).

  64. 64.

    Freed, A. M. et al. On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res. 117, E00L06 (2012).

  65. 65.

    Solomon, S. C. & Head, J. W. Lunar mascon basins: lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys. Space Phys. 18, 107–141 (1980).

  66. 66.

    Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. 106, 20563–20585 (2001).

  67. 67.

    Hauber, E., Grott, M. & Kronberg, P. Martian rifts: structural geology and geophysics. Earth Planet. Sci. Lett. 294, 393–410 (2010).

  68. 68.

    Roberts, J. H. & Barnouin, O. S. The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res. 117, E02007 (2012).

  69. 69.

    Padovan, S., Tosi, N., Plesa, A.-C. & Ruedas, T. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017).

  70. 70.

    Michaut, C. & Pinel, V. Magma ascent and eruption triggered by cratering on the Moon. Geophys. Res. Lett. 45, 6408–6416 (2018).

  71. 71.

    Banks, M. E. et al. Duration of activity on lobate-scarp thrust faults on Mercury. J. Geophys. Res. Planets 120, 1751–1762 (2015).

  72. 72.

    Solomon, S. C. Mare volcanism and lunar crustal structure. Proc. Lunar Sci. Conf. 6, 1021–1042 (1975).

  73. 73.

    Wilson, L. & Head, J. W. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: theory). Icarus 283, 146–175 (2017).

  74. 74.

    Vander Kaaden, K. E. & McCubbin, F. M. Exotic crust formation on Mercury: consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets 120, 195–209 (2015).

  75. 75.

    Klimczak, C. Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets 120, 2135–2151 (2015).

  76. 76.

    Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

  77. 77.

    Rolf, T., Zhu, M.-H., Wünnemann, K. & Werner, S. C. The role of impact bombardment history in lunar evolution. Icarus 286, 138–152 (2017).

  78. 78.

    Lourenço, D. L., Rozel, A. B., Gerya, T. & Tackley, P. J. Efficient cooling of rocky planets by intrusive magmatism. Nat. Geosci. 11, 322–327 (2018).

  79. 79.

    Nahm, A. L. & Schultz, R. A. Magnitude of global contraction on Mars from analysis of surface faults: implications for Martian thermal history. Icarus 211, 389–400 (2011).

  80. 80.

    Baratoux, D., Toplis, M. J., Monnereau, M. & Gasnault, O. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341 (2011).

  81. 81.

    Rolf, T., Steinberger, B., Sruthi, U. & Werner, S. C. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus. Icarus 313, 107–123 (2018).

  82. 82.

    Barclay, T. et al. A sub-Mercury-sized exoplanet. Nature 494, 452–454 (2013).

  83. 83.

    Dorn, C., Noack, L. & Rozel, A. B. Outgassing on stagnant-lid super-Earths. Astron. Astrophys. 614, A18 (2018).

  84. 84.

    Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75 (2018).

  85. 85.

    Unterborn, C. T. & Panero, W. R. The pressure and temperature limits of likely rocky exoplanets. J. Geophys. Res. Planets 124, 1704–1716 (2019).

  86. 86.

    Santerne, A. et al. An Earth-sized exoplanet with a Mercury-like composition. Nat. Astron. 2, 393–400 (2018).

  87. 87.

    Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2013).

  88. 88.

    Cogley, J. G. Continental margins and the extent and number of the continents. Rev. Geophys. Space Phys. 22, 101–122 (1984).

  89. 89.

    Fassett, C. I. et al. The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett. 38, L10202 (2011).

  90. 90.

    Klimczak, C. et al. Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: strain analysis and implications for plains evolution. J. Geophys. Res. 117, E00L03 (2012).

  91. 91.

    Byrne, P. K., Klimczak, C. & Şengör, A. M. C. in Mercury: The View After MESSENGER (eds Solomon, S. et al.) 249–286 (Cambridge Univ. Press, 2018).

  92. 92.

    Klimczak, C. Geomorphology of lunar grabens requires igneous dikes at depth. Geology 42, 963–966 (2014).

  93. 93.

    Kadish, S. J. et al. A global catalog of large lunar craters (≥20 km) from the lunar Orbiter Laser Altimeter. Lunar Planet. Sci. 42, 1006 (2011).

  94. 94.

    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

  95. 95.

    Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

  96. 96.

    Stofan, E. R. et al. Preliminary analysis of an expanded corona database for Venus. Geophys. Res. Lett. 28, 4267–4270 (2001).

  97. 97.

    Robbins, S. J. & Hynek, B. M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. 117, E05004 (2012).

Download references


I thank C. I. Fassett, M. A. Ivanov and L. M. Jozwiak for providing several component datasets that constitute the map figures, and A. M. O’Halloran, C. J. Ahrens, R. M. Atkins, D. R. Bohnenstiehl, J. M. Chesnutt, C. Klimczak, C. L. Kling, F. M. McCubbin, L. K. Schaefer, A. M. C. Şengör and S. C. Solomon for their constructive feedback during the writing of the manuscript. I acknowledge support from North Carolina State University. This research made use of NASA’s Planetary Data System and Astrophysics Data System.

Author information



Corresponding author

Correspondence to Paul K. Byrne.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information Nature Astronomy thanks Alfred McEwan, Rosaly Lopes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byrne, P.K. A comparison of inner Solar System volcanism. Nat Astron 4, 321–327 (2020). https://doi.org/10.1038/s41550-019-0944-3

Download citation