The infrared spectrum of protonated buckminsterfullerene C60H+

Article metrics

Abstract

Although fullerenes have long been hypothesized to occur in interstellar environments, they have only recently been unambiguously identified through spectroscopy1,2,3,4. C60, C70 and C60+ now constitute the largest molecular species individually identified in the interstellar medium. Fullerenes have substantial proton affinities and it has been suggested that C60H+ is likely the most abundant interstellar analogue of C60 (ref. 5). We present here a laboratory infrared (IR) spectrum of gaseous C60H+. Symmetry breaking in C60H+ produces an IR spectrum that is much richer than that of C60. The experimental spectrum is used to benchmark theoretical spectra indicating that the B3LYP density functional with the 6-311+G(d,p) basis set accurately reproduces the spectrum. Comparison with IR emission spectra from two planetary nebulae, SMP LMC56 and SMC16, which have been associated with high C\({}_{60}\) abundances, indicates that C60H+ is a plausible contributor to their IR emission.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure of C60H+ and experimental aspects of recording its IRMPD spectrum.
Fig. 2: Experimental IRMPD spectrum of C60H+ compared with a Fourier transform IR absorption spectrum of a thin film of neutral C60 taken from ref. 25.
Fig. 3: The experimental IR spectrum of C60H+ compared with DFT computed spectra using different basis sets and functionals.
Fig. 4: Comparison of the C60H+ laboratory spectrum with emission spectra from two planetary nebulae.

Data availability

Selected machine-readable data files are available in the Supplementary Information, including the experimental and theoretical IR spectral data of C60H+ as xy-files. The experimental data that support the findings of this study are available in the Supplementary Information.

References

  1. 1.

    Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).

  2. 2.

    Sellgren, K. et al. C60 in reflection nebulae. Astrophys. J. 722, L54 (2010).

  3. 3.

    García-Hernández, D. A. et al. Formation of fullerenes in H-containing planetary nebulae. Astrophys. J. 724, L39 (2010).

  4. 4.

    Campbell, E. K., Holz, M., Gerlich, D. & Maier, J. P. Laboratory confirmation of C60 + as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).

  5. 5.

    Kroto, H. W. & Jura, M. Circumstellar and interstellar fullerenes and their analogues. Astron. Astrophys. 263, 275–280 (1992).

  6. 6.

    Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

  7. 7.

    von Helden, G., Holleman, I., Knippels, G. M. H., van der Meer, A. F. G. & Meijer, G. Infrared resonance enhanced multiphoton ionization of fullerenes. Phys. Rev. Lett. 79, 5234–5237 (1997).

  8. 8.

    Fulara, J., Jakobi, M. & Maier, J. P. Electronic and infrared spectra of C\({}_{60}^{+}\), and C\({}_{60}^{-}\) in neon and argon matrices. Chem. Phys. Lett. 211, 227–234 (1993).

  9. 9.

    Schettino, V., Pagliai, M., Ciabini, L. & Cardini, G. The vibrational spectrum of fullerene C60. J. Phys. Chem. A 105, 11192–11196 (2001).

  10. 10.

    Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 362, 49–54 (2019).

  11. 11.

    Kupser, P., Steill, J. D., Oomens, J., Meijer, G. & von Helden, G. IR spectroscopy of gas-phase C60 . Phys. Chem. Chem. Phys. 10, 6862–6866 (2008).

  12. 12.

    Gerlich, D., Jašík, J., Strelnikov, D. V. & Roithova, J. IR spectroscopy of fullerene ions in a cryogenic quadrupole trap. Astrophys. J. 864, 62 (2018).

  13. 13.

    Fowler, P. W. Fullerene stability and structure. Contemp. Phys. 37, 235–247 (1996).

  14. 14.

    Somerville, W. B. & Bellis, J. G. An astronomical search for the molecule C60. Mon. Not. R. Astron. Soc. 240, 41P–46P (1989).

  15. 15.

    Snow, T. P. & Seab, C. G. A search for interstellar and circumstellar C60. Astron. Astrophys. 213, 291–294 (1989).

  16. 16.

    Foing, B. H. & Ehrenfreund, P. Detection of two interstellar absorption bands coincident with spectral features of C60 +. Nature 369, 296–298 (1994).

  17. 17.

    Herbig, G. H. The search for interstellar C60. Astrophys. J. 542, 334–343 (2000).

  18. 18.

    Díaz-Luis, J. J. et al. GTC/CanariCam mid-IR imaging of the fullerene-rich planetary nebula IC 418: searching for the spatial distribution of fullerene-like molecules. Astrophys. J. 155, 105 (2018).

  19. 19.

    Zhang, Y., Sadjadi, S., Hsia, C.-H. & Kwok, S. Search for hydrogenated C60 (fulleranes) in circumstellar envelopes. Astrophys. J. 845, 76 (2017).

  20. 20.

    Iglesias-Groth, S., García-Hernández, D. A., Cataldo, F. & Manchado, A. Infrared spectroscopy of hydrogenated fullerenes (fulleranes) at extreme temperatures. Mon. Not. R. Astron. Soc. 423, 2868–2878 (2012).

  21. 21.

    Bohme, D. K. Buckminsterfullerene cations: new dimensions in gas-phase ion chemistry. Mass Spectrom. Rev. 28, 672–693 (2009).

  22. 22.

    Stoldt, C. R., Maboudian, R. & Carraro, C. Vibrational spectra of hydrogenated buckminsterfullerene: a candidate for the unidentified infrared emission. Astrophys. J. 548, L225–L228 (2001).

  23. 23.

    Oomens, J., Tielens, A. G. G. M., Sartakov, B. G., von Helden, G. & Meijer, G. Laboratory infrared spectroscopy of cationic polycyclic aromatic hydrocarbon molecules. Astrophys. J. 591, 968–985 (2003).

  24. 24.

    Johnson, R. D., Meijer, G. & Bethune, D. S. C60 has icosahedral symmetry. J. Am. Chem. Soc. 112, 8983–8984 (1990).

  25. 25.

    Holleman, I. Dynamics of CO in Solid C 60. PhD thesis, Radboud University, Nijmegen (1998); https://repository.ubn.ru.nl/handle/2066/18641

  26. 26.

    N. Solcà, N. & Dopfer, O. Protonated benzene: IR spectrum and structure of C6H6? Angew. Chem. Int. Ed. 41, 3628–3631 (2002).

  27. 27.

    Allamandola, L. J., Hudgins, D. M. & Sandford, S. A. Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. Astrophys. J. 511, L115–L119 (1999).

  28. 28.

    Peeters, E. et al. The rich 6 to 9 μm spectrum of interstellar PAHs. Astron. Astrophys. 390, 1089–1113 (2002).

  29. 29.

    Maltseva, E. et al. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of hydrogenation and alkylation. Astron. Astrophys. 610, A65 (2018).

  30. 30.

    Bernard-Salas, J. et al. On the excitation and formation of circumstellar fullerenes. Astrophys. J. 757, 41 (2012).

  31. 31.

    Candian, A. et al. Searching for stable fullerenes in space with computational chemistry. Mon. Not. R. Astron. Soc. 485, 1137–1146 (2019).

  32. 32.

    Berne, O., Mulas, G. & Joblin, C. Interstellar C60 +. Astron. Astrophys. 550, L4 (2013).

  33. 33.

    Martens, J., Berden, G., Gebhardt, C. R. & Oomens, J. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev. Sci. Instrum. 87, 103108 (2016).

  34. 34.

    McElvany, S. W. & Callahan, J. H. Chemical ionization of fullerenes. J. Phys. Chem. 95, 6186–6191 (1991).

  35. 35.

    Anacleto, J. F. et al. Analysis of minor constituents in fullerene soots by LC-MS using a heated pneumatic nebulizer interface with atmospheric pressure chemical ionization. Can. J. Chem. 70, 2558–2568 (1992).

  36. 36.

    Grosse, S. & Letzel, T. Liquid chromatography/atmospheric pressure ionization mass spectrometry with post-column liquid mixing for the efficient determination of partially oxidized polycyclic aromatic hydrocarbons. J. Chromatogr. A 1139, 75–83 (2007).

  37. 37.

    Guang-Wen, L., Chia-Yang, C. & Chang-Fu, W. Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray ionization with tropylium post-column derivatization. Rapid Commun. Mass Spectrom. 21, 3694–3700 (2007).

  38. 38.

    Oomens, J., Sartakov, B. G., Meijer, G. & von Helden, G. Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. Int. J. Mass Spectrom. 254, 1–19 (2006).

  39. 39.

    Bauschlicher, C. W., Ricca, A., Boersma, C. & Allamandola, L. J. The NASA Ames PAH IR Spectroscopic Database: computational Version 3.00 with updated content and the introduction of multiple scaling factors. Astrophys. J. Suppl. Ser. 234, 32 (2018).

  40. 40.

    Bauschlicher, C. W. & Ricca, A. On the calculation of the vibrational frequencies of polycyclic aromatic hydrocarbons. Mol. Phys. 108, 2647–2654 (2010).

  41. 41.

    Russell, D. & Johnson, R. D. NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101 (release 19 April 2018); http://cccbdb.nist.gov/

  42. 42.

    Maltseva, E. et al. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of periphery. Astrophys. J. 831, 58 (2016).

  43. 43.

    Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. Ser. 71, 733–775 (1989).

  44. 44.

    Schutte, W. A., Tielens, A. G. G. M. & Allamandola, L. J. Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons. Astrophys. J. 415, 397–414 (1993).

  45. 45.

    Cook, D. J. & Saykally, R. J. Simulated infrared emission spectra of highly excited polyatomic molecules: a detailed model of the PAH-UIR hypothesis. Astrophys. J. 493, 793–802 (1998).

  46. 46.

    Parneix, P., Basire, M. & Calvo, F. Accurate modeling of infrared multiple photon dissociation spectra: the dynamical role of anharmonicities. J. Phys. Chem. A 117, 3954–3959 (2013).

Download references

Acknowledgements

We gratefully acknowledge the expert support by the FELIX staff. This work is supported by the European MCSA ITN network ’EUROPAH’ (grant no. 722346) and the Dutch Astrochemistry Network (DAN-II, grant no. 648.000.030) of NWO. For the computational work, we acknowledge support by NWO under the ’Rekentijd’ program (grant no. 17603) and the SurfSARA staff.

Author information

J.P., J.M. and G.B. carried out the experiments, which were conceptualized by J.O. and G.B.; J.P. and J.O. wrote the manuscript with input from all other authors.

Correspondence to Jos Oomens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Jan Cami and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Table 1 and Data 1–4 captions.

Supplementary Data 1

The IRMPD spectrum of C60H+.

Supplementary Data 2

Calculated IR spectrum for the exohedral C60H+ geometry at the B3LYP/6-311+G(d,p) level of theory.

Supplementary Data 3

Calculated IR spectrum for the endohedral C60H+ geometry at the B3LYP/6-311+G(d,p) level of theory.

Supplementary Data 4

Optimized geometry of C60H+ at the B3LYP/6-311+G(d,p) level of theory.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palotás, J., Martens, J., Berden, G. et al. The infrared spectrum of protonated buckminsterfullerene C60H+. Nat Astron (2019) doi:10.1038/s41550-019-0941-6

Download citation