Gamma-ray bursts as cool synchrotron sources

Abstract

Gamma-ray bursts (GRBs) are the most energetic electromagnetic sources in the Universe, releasing 1042–1047 J (refs. 1,2) in prompt gamma-ray radiation. Fifty years after their discovery, the physical origin of this emission is still unknown. Synchrotron emission has been an early contender3,4, but was criticized because spectral fits of empirical models suggest too hard a slope of the low-energy power law, violating the so-called synchrotron line-of-death5,6, and for its inefficient extraction of energy when the electrons are not fully cooled, reviving models of photospheric emission7,8,9. Fitting proper synchrotron spectra10 (rather than heuristic functions) and taking electron cooling into account was shown to work for several GRB spectra10,11,12,13,14. Here, we show that idealized synchrotron emission, when properly incorporating time-dependent cooling of the electrons, is capable of fitting ~95% of all time-resolved spectra of single-peaked GRBs observed by Fermi’s Gamma-ray Burst Monitor. Thus, the past exclusion of synchrotron radiation as an emission mechanism derived via the line-of-death was misleading. Our analysis probes the microphysical processes operating within these ultra-relativistic outflows and provides estimates of magnetic field strengths and Lorentz factors of the emitting region directly from spectral fits. The resulting parameter distributions are largely compatible with theoretical spectral15,16,17 and outflow predictions18. The emission energetics implied by the observed, uncooled electrons remain challenging for all theoretical models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Relation between cooling electrons and the synchrotron emission spectrum.
Fig. 2: Fits to the count data starting from the electron distribution.
Fig. 3: Distributions of the synchrotron-cooling Lorentz factors.
Fig. 4: Observed Band function low-energy slope (α) compared with the observed cooling regime.

Data availability

The raw data are publicly available via the Fermi Science Support Center (https://fermi.gsfc.nasa.gov/ssc/). The processed data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The spectral fitting software (3ML) used in this work is open source and freely available. Analysis scripts for reducing the data are available from the corresponding author upon request.

References

  1. 1.

    Cenko, S. B. et al. Afterglow observations of Fermi Large Area Telescope gamma-ray bursts and the emerging class of hyper-energetic events. Astrophys. J. 732, 29 (2011).

    ADS  Google Scholar 

  2. 2.

    Atteia, J. L. et al. The maximum isotropic energy of gamma-ray bursts. Astrophys. J. 837, 119 (2017).

    ADS  Google Scholar 

  3. 3.

    Mészàros, P. & Rees, M. Gamma-ray bursts: multiwaveband spectral predictions for blast wave models. Astrophys. J. Lett. 418, L59–L62 (1993).

    ADS  Google Scholar 

  4. 4.

    Katz, J. I. Low-frequency spectra of gamma-ray bursts. Astrophys. J. 432, L107–L109 (1994).

    ADS  Google Scholar 

  5. 5.

    Crider, A. et al. Evolution of the low-energy photon spectra in gamma-ray bursts. Astrophys. J. 479, L39–L42 (1994).

    ADS  Google Scholar 

  6. 6.

    Preece, R. D. et al. The synchrotron shock model confronts a “line of death” in the BATSE gamma-ray burst data. Astrophys. J. 506, L23–L26 (1998).

    ADS  Google Scholar 

  7. 7.

    Beloborodov, A. M. Radiative transfer in ultrarelativistic outflows. Astrophys. J. 737, 68 (2011).

    ADS  Google Scholar 

  8. 8.

    Meszaros, P. & Rees, M. J. Steep slopes and preferred breaks in gamma-ray burst spectra: the role of photospheres and Comptonization. Astrophys. J. 530, 292–298 (2000).

    ADS  Google Scholar 

  9. 9.

    Vianello, G. et al. The bright and the slow—GRBs 100724B and 160509A with high-energy cutoffs at 100 MeV. Astrophys. J. 864, 163 (2017).

    ADS  Google Scholar 

  10. 10.

    Burgess, J. M. et al. Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models. Astrophys. J. 784, 17 (2014).

    ADS  Google Scholar 

  11. 11.

    Lloyd, N. M. & Petrosian, V. Synchrotron radiation as the source of gamma-ray burst spectra. Astrophys. J. 543, 722–732 (2000).

    ADS  Google Scholar 

  12. 12.

    Burgess, J. M. et al. Constraints on the synchrotron shock model for the Fermi GRB 090820A observed by gamma-ray burst monitor. Astrophys. J. 741, 24 (2011).

    ADS  Google Scholar 

  13. 13.

    Zhang, B.-B., Uhm, Z. L., Connaughton, V., Briggs, M. S. & Zhang, B. Synchrotron origin of the typical GRB band function—a case study of GRB 130606B. Astrophys. J. 816, 72 (2016).

    ADS  Google Scholar 

  14. 14.

    Zhang, B. B. et al. Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B. Nat. Astron. 2, 69–75 (2018).

    ADS  Google Scholar 

  15. 15.

    Uhm, Z. L. & Zhang, B. Fast-cooling synchrotron radiation in a decaying magnetic field and Γ-ray burst emission mechanism. Nat. Phys. 10, 351–356 (2014).

    Google Scholar 

  16. 16.

    Beniamini, P. & Piran, T. Constraints on the synchrotron emission mechanism in gamma-ray bursts. Astrophys. J. 769, 69 (2013).

    ADS  Google Scholar 

  17. 17.

    Beniamini, P., Barniol Duran, R. & Giannios, D. Marginally fast cooling synchrotron models for prompt GRBs. Mon. Not. R. Astron. Soc. 476, 1785–1795 (2018).

    ADS  Google Scholar 

  18. 18.

    Zhang, B. & Yan, H. The Internal-Collision-Induced Magnetic Reconnection and Turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90 (2011).

    ADS  Google Scholar 

  19. 19.

    Yu, H.-F. et al. The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years. Astron. Astrophys. 588, A135 (2016).

    Google Scholar 

  20. 20.

    Band, D. et al. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys. J. 413, 281–292 (1993).

    ADS  Google Scholar 

  21. 21.

    Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17–L20 (1998).

    ADS  Google Scholar 

  22. 22.

    Ryde, F. et al. Identification and properties of the photospheric emission in GRB090902B. Astrophys. J. Lett. 709, L172–L177 (2010).

    ADS  Google Scholar 

  23. 23.

    Sari, R., Narayan, R. & Piran, T. Cooling timescales and temporal structure of gamma-ray bursts. Astrophys. J. 473, 204 (1996).

    ADS  Google Scholar 

  24. 24.

    Kirk, J. G., Guthmann, A. W., Gallant, Y. A. & Achterberg, A. Particle acceleration at ultrarelativistic shocks: an eigenfunction method. Astrophys. J. 542, 235–242 (2000).

    ADS  Google Scholar 

  25. 25.

    Baring, M. G. Gamma-ray burst prompt emission: implications from shock acceleration theory. Adv. Space Res. 38, 1281–1286 (2006).

    ADS  Google Scholar 

  26. 26.

    Eichler, D. & Levinson, A. A compact fireball model of gamma-ray bursts. Astrophys. J. 529, 146–150 (2000).

    ADS  Google Scholar 

  27. 27.

    Baring, M. G. γγ Attenuation and relativistic beaming in gamma-ray bursts. Astrophys. J. 418, 391 (1993).

    ADS  Google Scholar 

  28. 28.

    Zhang, B. & Pe’er, A. Evidence of an initially magnetically dominated outflow in GRB 080916C. Astrophys. J. Lett. 700, L65–L68 (2009).

    ADS  Google Scholar 

  29. 29.

    Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    ADS  Google Scholar 

  30. 30.

    Xu, S., Yang, Y.-P. & Zhang, B. On the synchrotron spectrum of GRB prompt emission. Astrophys. J. 853, 43 (2018).

    ADS  Google Scholar 

  31. 31.

    Scargle, J. D., Norris, J. P., Jackson, B. & Chiang, J. Studies in astronomical time series analysis. VI. Bayesian block representations. Astrophys. J. 764, 167 (2013).

    ADS  Google Scholar 

  32. 32.

    Vianello, G. The significance of an excess in a counting experiment: assessing the impact of systematic uncertainties and the case with a Gaussian background. Astrophys. J. Suppl. Ser. 236, 17 (2018).

    ADS  Google Scholar 

  33. 33.

    Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS  Google Scholar 

  34. 34.

    Bissaldi, E. et al. Ground-based calibration and characterization of the Fermi gamma-ray burst monitor detectors. Exp. Astron. 24, 47–88 (2009).

    ADS  Google Scholar 

  35. 35.

    Vianello, G. et al. The Multi-Mission Maximum Likelihood framework (3 ML). Preprint at https://arxiv.org/abs/1507.08343 (2015).

  36. 36.

    Vianello, G., Burgess, J. M., Henrike, F. & Lauer, R. J. giacomov/astromodels: Zenodo release version 0.5.1 (Zenodo, 25 June 2018).

  37. 37.

    Chang, J. S. & Cooper, G. A practical difference scheme for Fokker-Planck equations. J. Comput. Phys. 6, 1–16 (1970).

    ADS  MATH  Google Scholar 

  38. 38.

    Gelman, A. A Bayesian formulation of exploratory data analysis and goodness‐of‐fit testing*. Int. Stat. Rev. 71, 369–382 (2007).

    MATH  Google Scholar 

  39. 39.

    Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55, 1–17 (1968).

    Google Scholar 

  40. 40.

    Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Google Scholar 

  41. 41.

    Pe’er, A., Felix, R., Wijers, R. A. M. J., Meszaros, P. & Rees, M. J. A new method of determining the initial size and Lorentz factor of gamma-ray burst fireballs using a thermal emission component. Astrophys. J. 664, L1–L4 (2007).

    ADS  Google Scholar 

  42. 42.

    Beloborodov, A. M. On the efficiency of internal shocks in gamma-ray bursts. Astrophys. J. 539, L25–L28 (2000).

    ADS  Google Scholar 

  43. 43.

    Narayan, R. & Kumar, P. A turbulent model of gamma-ray burst variability. Mon. Not. R. Astron. Soc. Lett. 394, L117–L120 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Buchner, E. Cameron and R. Diehl for enlightening conversations. J.M.B. acknowledges support from the Alexander von Humboldt Foundation. J.M.B. and J.G. acknowledge support by the DFG cluster of excellence ‘Origin and Structure of the Universe’ (www.universe-cluster.de). D.B., F.B. and J.G. acknowledge support by the DFG through SFB 1258. A.B. acknowledges support by the University of Rijeka through the Erasmus+ programme.

Author information

Affiliations

Authors

Contributions

J.M.B. did the writing, numerical modelling and spectral analysis of the data. D.B. and D.G. provided theoretical calculations, interpretation and insight. A.B. performed sample selection and data reduction. J.G. and F.B. assisted in discussions and writing.

Corresponding author

Correspondence to J. Michael Burgess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13.

Supplementary Table 1

Supplementary Table 1

Supplementary Table 2

Supplementary Table 2

Supplementary Table 3

Supplementary Table 3

Supplementary Table 4

Supplementary Table 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burgess, J.M., Bégué, D., Greiner, J. et al. Gamma-ray bursts as cool synchrotron sources. Nat Astron 4, 174–179 (2020). https://doi.org/10.1038/s41550-019-0911-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing