Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustained formation of progenitor globular clusters in a giant elliptical galaxy

Abstract

Globular clusters (GCs) are thought to be ancient relics from the early formative phase of galaxies, although their physical origin remains uncertain1,2. GCs are most numerous around massive elliptical galaxies, where they can exhibit a broad colour dispersion, suggesting a wide metallicity spread3. Here, we show that many thousands of compact and massive (~5 × 103–3 × 106M) star clusters have formed at an approximately steady rate over, at least, the past ~1 Gyr around NGC 1275, the central giant elliptical galaxy of the Perseus cluster. Beyond ~1 Gyr, these star clusters are indistinguishable in broadband optical colours from the more numerous GCs. Their number distribution exhibits a similar dependence with luminosity and mass as the GCs, whereas their spatial distribution resembles a filamentary network of multiphase gas4,5 associated with cooling of the intracluster gas6,7. The sustained formation of these star clusters demonstrates that progenitor GCs can form over cosmic history from cooled intracluster gas, thus contributing to both the large number and broad colour dispersion—owing to an age spread, in addition to a spread in metallicity—of GCs in massive elliptical galaxies. The progenitor GCs have minimal masses well below the maximal masses of Galactic open star clusters, affirming a common formation mechanism for star clusters over all mass scales8,9,10 irrespective of their formative pathways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Colour–colour diagram of star clusters belonging to NGC 1275.
Fig. 2: Spatial distributions of different star cluster populations in NGC 1275.
Fig. 3: Luminosity and mass functions for the BSCs and GCs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Brodie, J. P. & Strader, J. Extragalactic globular clusters and galaxy formation. Annu. Rev. Astron. Astrophys. 44, 193–267 (2006).

    ADS  Article  Google Scholar 

  2. 2.

    Harris, W. E. Massive star clusters in galaxies. Philos. Trans. R. Soc. A 368, 889–906 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Harris, W. E. et al. Globular cluster systems in brightest cluster galaxies. III: beyond bimodality. Astrophys. J. 835, 101 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Salomé, P. et al. Cold molecular gas in the Perseus cluster core. association with X-ray cavity, Hα filaments and cooling flow. Astron. Astrophys. 454, 437–445 (2006).

    ADS  Article  Google Scholar 

  5. 5.

    Lim, J., Ohyama, Y., Chi-Hung, Y., Dinh-V-Trung & Shiang-Yu, W. A molecular hydrogen nebula in the central cD galaxy of the perseus cluster. Astrophys. J. 744, 112 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Cavagnolo, K. W., Donahue, M., Voit, G. M. & Sun, M. An entropy threshold for strong Hα and radio emission in the cores of galaxy clusters. Astrophys. J. 683, L107 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Werner, N. et al. The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 439, 2291–2306 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Kroupa, P. & Boily, C. M. On the mass function of star clusters. Mon. Not. R. Astron. Soc. 336, 1188–1194 (2002).

    ADS  Article  Google Scholar 

  9. 9.

    Whitmore, B. C. et al. The antennae galaxies (NGC 4038/4039) revisited: advanced camera for surveys and NICMOS observations of a prototypical merger. Astron. J. 140, 75–109 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Howard, C. S., Pudritz, R. E. & Harris, W. E. A universal route for the formation of massive star clusters in giant molecular clouds. Nat. Astron. 2, 725–730 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Holtzman, J. A. et al. Planetary camera observations of NGC 1275: discovery of a central population of compact massive blue star clusters. Astron. J. 103, 691 (1992).

    ADS  Article  Google Scholar 

  12. 12.

    Carlson, M. N. et al. Deep Hubble Space Telescope observations of star clusters in NGC 1275. Astron. J. 115, 1778–1790 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    Richer, H. B., Crabtree, D. R., Fabian, A. C. & Lin, D. N. C. Star and cluster formation in NGC 1275. Astron. J. 105, 877 (1993).

    ADS  Article  Google Scholar 

  14. 14.

    Canning, R. E. A. et al. Star formation in the outer filaments of NGC 1275. Mon. Not. R. Astron. Soc. 405, 115–128 (2010).

    ADS  Google Scholar 

  15. 15.

    Canning, R. E. A. et al. Filamentary star formation in NGC 1275. Mon. Not. R. Astron. Soc. 444, 336–349 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Werner, N., Urban, O., Simionescu, A. & Allen, S. W. A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies. Nature 502, 656–658 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Yu, A. P. Y., Lim, J., Ohyama, Y., Chan, J. C. C. & Broadhurst, T. The high-velocity system: infall of a giant low-surface-brightness galaxy toward the center of the Perseus cluster. Astrophys. J. 814, 101 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Harris, W. E. et al. Globular cluster systems in brightest cluster galaxies: a near-universal luminosity function? Astrophys. J. 797, 128 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Carlson, M. N. & Holtzman, J. A. Measuring sizes of marginally resolved young globular clusters with the Hubble space telescope. Publ. Astron. Soc. Pac. 113, 1522–1540 (2001).

    ADS  Article  Google Scholar 

  20. 20.

    Brockamp, M., Küpper, A. H. W., Thies, I., Baumgardt, H. & Kroupa, P. Erosion of globular cluster systems: the influence of radial anisotropy, central black holes and dynamical friction. Mon. Not. R. Astron. Soc. 441, 150–171 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Whitmore, B. C., Schweizer, F., Leitherer, C., Borne, K. & Robert, C. Hubble space telescope discovery of candidate young globular clusters in the merger remnant NGC 7252. Astron. J. 106, 1354–1370 (1993).

    ADS  Article  Google Scholar 

  22. 22.

    Whitmore, B. C. & Schweizer, F. Hubble space telescope observations of young star clusters in NGC 4038/4039, ‘The Antennae’ galaxies. Astron. J. 109, 960–980 (1995).

    ADS  Article  Google Scholar 

  23. 23.

    O’Connell, R. W., Gallagher, I., John, S., Hunter, D. A. & Colley, W. N. Hubble space telescope imaging of super star clusters in M82. Astrophys. J. 446, L1 (1995).

    ADS  Article  Google Scholar 

  24. 24.

    Schweizer, F., Miller, B. W., Whitmore, B. C. & Fall, S. M. Hubble space telescope observations of candidate young globular clusters and stellar associations in the recent merger remnant NGC 3921. Astron. J. 112, 1839–1862 (1996).

    Article  Google Scholar 

  25. 25.

    Lim, S., Hwang, N. & Lee, M. G. The star cluster system in the nearby starburst galaxy M82. Astrophys. J. 766, 20 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Lada, C. J. & Lada, E. A. Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    Bik, A., Lamers, H. J. G. L. M., Bastian, N., Panagia, N. & Romaniello, M. Clusters in the inner spiral arms of M 51: the cluster IMF and the formation history. Astron. Astrophys. 397, 473–486 (2003).

    ADS  Article  Google Scholar 

  28. 28.

    Barmby, P., Kuntz, K. D., Huchra, J. P. & Brodie, J. P. Hubble space telescope observations of star clusters in M101. Astron. J. 132, 883–890 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    Lucas, R. A. et al. ACS Data Handbook Version 9.0 (Space Telescope Science Institute, 2018); https://go.nature.com/2nMDjVQ

  30. 30.

    Diolaiti, E. et al. Analysis of isoplanatic high resolution stellar fields by the StarFinder code. Astron. Astrophys. Suppl. Ser. 147, 335–346 (2000).

    ADS  Article  Google Scholar 

  31. 31.

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    Article  Google Scholar 

  32. 32.

    Zackrisson, E., Rydberg, C.-E., Schaerer, D., Ostlin, G. & Tuli, M. The spectral evolution of the first galaxies. I. James webb space telescope detection limits and color criteria for population III galaxies. Astrophys. J. 740, 13 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. Ser. 123, 3–40 (1999).

    ADS  Article  Google Scholar 

  34. 34.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). J.L. acknowledges support from the Research Grants Council of Hong Kong through grants 17303414 and 17304817. Y.O. acknowledges support by grant MOST 107-2119-M-001-026-. T.B. thanks University of Hong Kong for generous support from the Visiting Research Professor Scheme.

Author information

Affiliations

Authors

Contributions

J.L. supervised the project and wrote the paper. E.W. and Y.O. conducted the technical aspects of the work. T.B. and E.M. initiated the project and participated in the interpretation of the results.

Corresponding author

Correspondence to Jeremy Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Pavel Kroupa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–4 and refs. 1–14

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Wong, E., Ohyama, Y. et al. Sustained formation of progenitor globular clusters in a giant elliptical galaxy. Nat Astron 4, 153–158 (2020). https://doi.org/10.1038/s41550-019-0909-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing