Planck evidence for a closed Universe and a possible crisis for cosmology


The recent Planck Legacy 2018 release has confirmed the presence of an enhanced lensing amplitude in cosmic microwave background power spectra compared with that predicted in the standard Λ cold dark matter model, where Λ is the cosmological constant. A closed Universe can provide a physical explanation for this effect, with the Planck cosmic microwave background spectra now preferring a positive curvature at more than the 99% confidence level. Here, we further investigate the evidence for a closed Universe from Planck, showing that positive curvature naturally explains the anomalous lensing amplitude, and demonstrating that it also removes a well-known tension in the Planck dataset concerning the values of cosmological parameters derived at different angular scales. We show that since the Planck power spectra prefer a closed Universe, discordances higher than generally estimated arise for most of the local cosmological observables, including baryon acoustic oscillations. The assumption of a flat Universe could therefore mask a cosmological crisis where disparate observed properties of the Universe appear to be mutually inconsistent. Future measurements are needed to clarify whether the observed discordances are due to undetected systematics, or to new physics or simply are a statistical fluctuation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Preference for a closed Universe, ΩK < 0, from Planck.
Fig. 2: Degeneracy between curvature and lensing.
Fig. 3: Curvature and shift in parameters.
Fig. 4: Tension with BAO.
Fig. 5: Tension with CMB lensing.
Fig. 6: Tension with cosmic shear measurements.
Fig. 7: Tension with combined data.
Fig. 8: Tensions in combined data.

Data availability

The data that support the plots within this paper and other findings of this study are available at or from the corresponding author upon reasonable request.

Code availability

All of the codes used to produce the presented results are publicly available. See Methods for more details.


  1. 1.

    Aghanim, N. et al. (Planck Collaboration) Planck 2018 results. VI. Cosmological parameters. Preprint at (2018).

  2. 2.

    Aghanim, N. et al. (Planck Collaboration) Planck 2018 results. V. CMB power spectra and likelihoods. Preprint at (2019).

  3. 3.

    2018 Cosmological Parameters and MC Chains (Planck Legacy Archive Wiki);

  4. 4.

    Linde, A. D. A new inflationary Universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982).

    ADS  Google Scholar 

  5. 5.

    Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).

    ADS  Google Scholar 

  6. 6.

    Linde, A. D. Inflation with variable Ω. Phys. Lett. B 351, 99–104 (1995).

    ADS  Google Scholar 

  7. 7.

    Linde, A. D. Can we have inflation with Ω > 1? J. Cosmol. Astropart. Phys. 0305, 002 (2003).

    ADS  MathSciNet  Google Scholar 

  8. 8.

    Uzan, J. P., Kirchner, U. & Ellis, G. F. R. Wilkinson Microwave Anisotropy Probe data and the curvature of space. Mon. Not. Roy. Astron. Soc. 344, L65–L68 (2003).

    ADS  Google Scholar 

  9. 9.

    Efstathiou, G. Is the low cosmic microwave background quadrupole a signature of spatial curvature? Mon. Not. Roy. Astron. Soc. 343, L95–L98 (2003).

    ADS  Google Scholar 

  10. 10.

    Freivogel, B., Kleban, M., Rodríguez Martínez, M. & Susskind, L. Observational consequences of a landscape. J. High Energy Phys. 3, 039 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  11. 11.

    Guth, A. H. & Nomura, Y. What can the observation of nonzero curvature tell us? Phys. Rev. D 86, 023534 (2012).

    ADS  Google Scholar 

  12. 12.

    Riess, A. G. et al. New parallaxes of galactic cepheids from spatially scanning the Hubble Space Telescope: implications for the Hubble constant. Astrophys. J. 855, 136 (2018).

    ADS  Google Scholar 

  13. 13.

    Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large Magellanic Cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys. J. 876, 85 (2019).

    ADS  Google Scholar 

  14. 14.

    Hildebrandt, H. et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing. Mon. Not. Roy. Astron. Soc. 465, 1454–1498 (2017).

    ADS  Google Scholar 

  15. 15.

    Joudaki, S. et al. KiDS-450: testing extensions to the standard cosmological model. Mon. Not. Roy. Astron. Soc. 471, 1259–1279 (2017).

    ADS  Google Scholar 

  16. 16.

    Motloch, P. & Hu, W. Tensions between direct measurements of the lens power spectrum from Planck data. Phys. Rev. D 97, 103536 (2018).

    ADS  Google Scholar 

  17. 17.

    Charnock, T., Battye, R. A. & Moss, A. Planck data versus large scale structure: methods to quantify discordance. Phys. Rev. D 95, 123535 (2017).

    ADS  Google Scholar 

  18. 18.

    Raveri, M. & Hu, W. Concordance and discordance in cosmology. Phys. Rev. D 99, 043506 (2019).

    ADS  MathSciNet  Google Scholar 

  19. 19.

    Adhikari, S. & Huterer, D. A new measure of tension between experiments. J. Cosmol. Astropart. Phys. 1901, 036 (2019).

    ADS  MathSciNet  Google Scholar 

  20. 20.

    Bernal, J. L., Verde, L. & Riess, A. G. The trouble with H 0. J. Cosmol. Astropart. Phys. 1610, 019 (2016).

    ADS  Google Scholar 

  21. 21.

    Zhao, G. B. et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627–632 (2017).

    ADS  Google Scholar 

  22. 22.

    Di Valentino, E., Melchiorri, A., Linder, E. V. & Silk, J. Constraining dark energy dynamics in extended parameter space. Phys. Rev. D 96, 023523 (2017).

    ADS  Google Scholar 

  23. 23.

    Poulin, V., Smith, T. L., Karwal, T. & Kamionkowski, M. Early dark energy can resolve the Hubble tension. Phys. Rev. Lett. 122, 221301 (2019).

    ADS  Google Scholar 

  24. 24.

    Yang, W., Pan, S., Di Valentino, E., Saridakis, E. N. & Chakraborty, S. Observational constraints on one-parameter dynamical dark-energy parametrizations and the H 0 tension. Phys. Rev. D 99, 043543 (2019).

    ADS  MathSciNet  Google Scholar 

  25. 25.

    Bond, J. R., Efstathiou, G. & Tegmark, M. Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon. Not. Roy. Astron. Soc. 291, L33–L41 (1997).

    ADS  Google Scholar 

  26. 26.

    Efstathiou, G. & Bond, J. R. Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. Roy. Astron. Soc. 304, 75–97 (1999).

    ADS  Google Scholar 

  27. 27.

    Elgaroy, O. & Multamaki, T. On using the CMB shift parameter in tests of models of dark energy. Astron. Astrophys. 471, 65–70 (2007).

    ADS  Google Scholar 

  28. 28.

    Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 25 (2013).

    ADS  Google Scholar 

  29. 29.

    Spiegelhalter, D., Best, N. G., Carlin, B. P. & van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639 (2002).

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    ADS  Google Scholar 

  31. 31.

    Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. Roy. Astron. Soc. 377, L74–L78 (2007).

    ADS  Google Scholar 

  32. 32.

    Verdinelli, I. & Wasserman, L. Computing Bayes factors using a generalization of the Savage–Dickey density ratio. J. Am. Stat. Assoc. 90, 614–618 (1995).

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Trotta, R. Applications of Bayesian model selection to cosmological parameters. Mon. Not. Roy. Astron. Soc. 378, 72–82 (2007).

    ADS  Google Scholar 

  34. 34.

    Ade, P. A. R. et al. (Planck Collaboration) Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

  35. 35.

    Addison, G. E. et al. Quantifying discordance in the 2015 Planck CMB spectrum. Astrophys. J. 818, 132 (2016).

    ADS  Google Scholar 

  36. 36.

    Beutler, F. et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. Roy. Astron. Soc. 416, 3017–3032 (2011).

    ADS  Google Scholar 

  37. 37.

    Ross, A. J. et al. The clustering of the SDSS DR7 main galaxy sample—I. A 4 per cent distance measure at z = 0.15. Mon. Not. Roy. Astron. Soc. 449, 835–847 (2015).

    ADS  Google Scholar 

  38. 38.

    Alam, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470, 2617–2652 (2017).

    ADS  Google Scholar 

  39. 39.

    Aghanim, N. et al. (Planck Collaboration) Planck 2018 results. VIII. Gravitational lensing. Preprint at (2019).

  40. 40.

    Abbott, T. M. C. et al. (Dark Energy Survey and South Pole Telescope Collaborations) Dark Energy Survey Year 1 results: a precise H 0 measurement from DES Y1, BAO, and D/H data. Mon. Not. Roy. Astron. Soc. 480, 3879–3888 (2018).

  41. 41.

    Hikage, C. et al. Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. Publ. Astron. Soc. Jpn 71, 43 (2019).

    ADS  Google Scholar 

  42. 42.

    Schlaufman, K. C., Thompson, I. B. & Casey, A. R. An ultra metal-poor star near the hydrogen-burning limit. Astrophys. J. 867, 98 (2018).

    ADS  Google Scholar 

  43. 43.

    Bond, H. E., Nelan, E. P., VandenBerg, D. A., Schaefer, G. H. & Harmer, D. HD 140283: a star in the solar neighborhood that formed shortly after the big bang. Astrophys. J. 765, L12 (2013).

    ADS  Google Scholar 

  44. 44.

    Jimenez, R., Cimatti, A., Verde, L., Moresco, M. & Wandelt, B. The local and distant Universe: stellar ages and H0. J. Cosmol. Astropart. Phys. 3, 043 (2019).

    ADS  Google Scholar 

  45. 45.

    Cyr-Racine, F. Y., de Putter, R., Raccanelli, A. & Sigurdson, K. Constraints on large-scale dark acoustic oscillations from cosmology. Phys. Rev. D 89, 063517 (2014).

    ADS  Google Scholar 

  46. 46.

    Blennow, M., Fernandez-Martinez, E., Mena, O., Redondo, J. & Serra, P. Asymmetric dark matter and dark radiation. J. Cosmol. Astropart. Phys. 1207, 022 (2012).

    ADS  Google Scholar 

  47. 47.

    Mangano, G., Melchiorri, A., Serra, P., Cooray, A. & Kamionkowski, M. Cosmological bounds on dark matter–neutrino interactions. Phys. Rev. D 74, 043517 (2006).

    ADS  Google Scholar 

  48. 48.

    Leonard, C. D., Bull, P. & Allison, R. Spatial curvature endgame: reaching the limit of curvature determination. Phys. Rev. D 94, 023502 (2016).

    ADS  Google Scholar 

  49. 49.

    Bull, P., Ferreira, P. G., Patel, P. & Santos, M. G. Late-time cosmology with 21 cm intensity mapping experiments. Astrophys. J. 803, 21 (2015).

    ADS  Google Scholar 

  50. 50.

    Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002).

    ADS  Google Scholar 

  51. 51.

    Scolnic, D. M. et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018).

    ADS  Google Scholar 

  52. 52.

    Cooke, R. J., Pettini, M. & Steidel, C. C. One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018).

    ADS  Google Scholar 

  53. 53.

    Kazin, E. A. et al. The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature. Mon. Not. Roy. Astron. Soc. 441, 3524–3542 (2014).

    ADS  Google Scholar 

  54. 54.

    Abbott, T. M. C. et al. (Dark Energy Survey Collaboration) Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Mon. Not. Roy. Astron. Soc. 483, 4866–4883 (2019).

    ADS  Google Scholar 

  55. 55.

    Bautista, J. E. et al. Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Lyα-Forests. Astron. Astrophys. 603, A12 (2017).

    Google Scholar 

  56. 56.

    Ata, M. et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. Roy. Astron. Soc. 473, 4773–4794 (2018).

    ADS  Google Scholar 

  57. 57.

    du Mas des Bourboux, H. et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4. Astron. Astrophys. 608, A130 (2017).

    Google Scholar 

Download references


E.D.V. acknowledges support from the European Research Council in the form of a Consolidator Grant with number 681431. A.M. thanks the University of Manchester and the Jodrell Bank Centre for Astrophysics for hospitality. A.M. is supported by TAsP, iniziativa specifica INFN. We thank M. Melchiorri for discussions.

Author information




E.D.V. performed all MCMC analyses, simulations and the Planck parameters analysis at different scales, produced all the figures, wrote the paper and helped with additional ideas. A.M. proposed the main idea, performed the tension analyses and wrote the paper. J.S. wrote the paper and helped with additional ideas.

Corresponding author

Correspondence to Alessandro Melchiorri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Valentino, E., Melchiorri, A. & Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat Astron 4, 196–203 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing